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Figure 1: 3D models created with our assembly-based 3D modeling tool.

Abstract

Assembly-based modeling is a promising approach to broadening
the accessibility of 3D modeling. In assembly-based modeling,
new models are assembled from shape components extracted from
a database. A key challenge in assembly-based modeling is the
identification of relevant components to be presented to the user.
In this paper, we introduce a probabilistic reasoning approach to
this problem. Given a repository of shapes, our approach learns a
probabilistic graphical model that encodes semantic and geometric
relationships among shape components. The probabilistic model is
used to present components that are semantically and stylistically
compatible with the 3D model that is being assembled. Our exper-
iments indicate that the probabilistic model increases the relevance
of presented components.
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1 Introduction

What remains hard is modeling. The structure inher-
ent in three-dimensional models is difficult for people
to grasp and difficult too for user interfaces to reveal
and manipulate. Only the determined model three-
dimensional objects, and they rarely invent a shape at
a computer, but only record a shape so that analysis or
manufacturing can proceed. The grand challenges in
three-dimensional graphics are to make simple model-
ing easy and to make complex modeling accessible to
far more people.

— Robert F. Sproull [1990]

Providing easy-to-use tools for the creation of detailed three-
dimensional content is a key challenge in computer graph-
ics.  With the accessibility of comprehensive game develop-
ment environments, individual programmers and small teams can
build and deploy realistic computer games and virtual worlds
[Epic Games 2011; Unity Technologies 2011]. Yet the creation of
compelling three-dimensional content to populate such worlds re-
mains out of reach for most developers, who lack 3D modeling ex-
pertise.

A promising approach to 3D modeling is assembly-based
modeling, in which new models are assembled from pre-
existing components.  The set of components can be de-
signed specifically for this purpose or derived from a repos-
itory of shapes [Funkhouser etal.2004; Kraevoy et al. 2007;
Maxis Software 2008; Chaudhuri and Koltun 2010]. The advan-
tage of assembly-based modeling is that users do not need to spec-
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ify new geometry from scratch; modeling reduces to selection and
placement of components.

A key challenge in assembly-based 3D modeling is the iden-
tification of relevant components to be presented to the user.
Unless the modeling task is fixed in advance, an assembly-
based modeling tool must use a large and varied database of
components.  The interface thus needs to provide effective
mechanisms for identifying the most relevant available compo-
nents at any stage of the modeling process. Previous work
used either text search or geometric matching to retrieve shapes
and components [Funkhouser et al. 2004; Shin and Igarashi 2007;
Lee and Funkhouser 2008; Chaudhuri and Koltun 2010].  Such
techniques do not take into account the semantic and stylistic
relationships between the current model and the components in
the database. In this paper, we present an approach that stud-
ies a model library to learn how shapes are put together, and
uses this knowledge to suggest semantically and stylistically rel-
evant components at each stage of the modeling process. Our
work aims to support open-ended 3D modeling [Talton et al. 2009;
Chaudhuri and Koltun 2010].

We use a probabilistic graphical model called a Bayesian network
[Pearl 1988; Koller and Friedman 2009] to represent semantic and
stylistic relationships between components in a shape database.
When new models are assembled, inference in the Bayesian net-
work is used to derive a relevance ranking on categories of com-
ponents, and on individual components within each category. For
example, when a user begins a modeling session by placing an air-
plane fuselage, the probabilistic model identifies components in the
repository that are more likely to be adjacent to a fuselage, such
as wings, stabilizers, and engines. The presented components con-
tinue to be dynamically updated as the current model is constructed.
Thus when the user augments the fuselage with an engine from
a military jet, the probabilistic model decreases the probability of
propellers and increases the probability of rockets and missiles. Af-
ter the user adds two wings, the probabilistic model lowers the prob-
ability of wings, since the presence of more than two wings on a jet
is unlikely.

To evaluate the effectiveness of the presented approach, we have
developed an assembly-based 3D modeling tool. Our modeling in-
terface is inspired by the successful Spore creation tools and uses
the probabilistic model to dynamically update the presented compo-
nents. Experiments with this interface indicate that the probabilistic
model produces more relevant suggestions than a static presentation
of components or a purely geometric approach.

In summary, this paper introduces a probabilistic model of shape
structure that incorporates both semantics and geometric style. The
model is trained on a shape database and is used to present relevant
shape components during a 3D modeling session. The experimental
results demonstrate that the model significantly increases the rele-
vance of presented components.

2 Prior Work

Assembly-based 3D modeling was pioneered by Funkhouser et
al. [2004], whose Modeling by Example system allows users to
retrieve source models using text- or shape-based search. Com-
ponents are then cut out of some of the retrieved models and
glued onto the current one. Subsequent research has investigated
sketch-based retrieval of components [Shin and Igarashi 2007;
Lee and Funkhouser 2008]. In all these approaches, the user must
search for each specific component. This is less appropriate for
open-ended 3D modeling, when the composition of the model is
not specified in advance and the user can benefit from a variety of
suggestions [Chaudhuri and Koltun 2010].

Kraevoy et al. [2007] describe an assembly-based modeling tool in
which the user can load a small set of compatible shapes and in-
terchange parts between them. The method assumes that all shapes
have the same number of components and does not handle heteroge-
nous shape libraries.

Chaudhuri and Koltun [2010] describe a data-driven technique for
presenting components that can augment a given shape. The ap-
proach is purely geometric and does not take into account the se-
mantics of components. Our results show that the incorporation of
semantic relationships increases the relevance of presented compo-
nents.

Fisher and Hanrahan [2010] describe a probabilistic model of spa-
tial context for 3D model search. Given a query bounding box
placed by the user in a 3D scene, their approach returns database
shapes that are appropriate in the context of the surrounding scene.
Our probabilistic model is substantially different from that of Fisher
and Hanrahan and is designed for interactive shape modeling.

Our use of probabilistic graphical models is influenced by the work
of Merrell et al. [2010], who generate residential building layouts
using a Bayesian network trained on architectural programs. The
probabilistic model of Merrell et al. is designed specifically to rep-
resent architectural programs. We introduce a probabilistic model
for the structure of general 3D shapes. Our model represents both
component categories and a variable number of individual compo-
nents, and augments existence and adjacency relations with sym-
metry and geometric style.

The interface of our assembly-based modeling tool is inspired
by the Spore creature creator, which allows creatures to be
assembled from components such as heads, legs, and arms
[Maxis Software 2008]. The Spore creature creator has been used
to create over one hundred million creature models in the first year
after release. While our interface closely follows the successful ap-
proach of Spore, the presented categories and parts are dynamically
updated in light of the current model, in order to present the most
relevant components from a large heterogenous library. Further-
more, we do not require specially crafted components, but extract
them semi-automatically from a shape library.

3 Overview

Our approach consists of two stages, illustrated in Figure 2. The
first is an offline preprocessing stage in which a probabilistic model
is trained on a shape database. The second is an interactive stage in
which inference in the probabilistic model is used to present rele-
vant shape components during a 3D modeling session.

Preprocessing. The input to the preprocessing stage is a repos-
itory of segmented and labeled shapes. Each label represents a
component category, such as head, arm, and torso. The labeling
is hierarchical and each component may contain subparts with as-
sociated subcategories; for example, torsos are composed of lower
torso and upper torso. We use the technique of Kalogerakis et al.
[2010] to produce the segmentation and labeling from a set of train-
ing examples. Thus we preprocess a shape repository into compo-
nents semi-automatically, relieving the chore of manually segment-
ing each model and labeling all components.

Given the set of segmented components, we further cluster them
based on geometric style. For each category, the components
are partitioned into a set of clusters with similar geometric fea-
ture vectors. The feature vectors incorporate descriptors such
as shape diameter [Shapira et al. 2010], curvature, shape context
[Mori et al. 2001], and PCA-based parameters (Appendix A). An
example of this clustering is illustrated in Figure 2, where arms
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Figure 2: Overview of our approach. The preprocessing stage (top) begins with a library of models, segmented and labeled using the
technique of Kalogerakis et al. [2010]. The components extracted from the models are further clustered by geometric style. A Bayesian
network is then learned that encodes probabilistic dependencies between labels, geometric styles, part adjacencies, number of parts from
each category, and symmetries. The figure shows a subset from a real network learned from a library of creature models. The runtime stage
(bottom) performs probabilistic inference in the learned Bayesian network to generate ranked lists of category labels and components within

each category, customized for the currently assembled model.

with a roughly humanoid appearance are grouped into one cluster,
while thin and alien arms are grouped into another. The clustering
allows the probabilistic model to operate not only on the semantic
labels, but also on the geometric appearance of components.

Given the set of category labels and style clusters within each label,
the method learns a probabilistic model that encodes dependencies
between labels, style clusters, part adjacencies, numbers of parts
from each category, and symmetries.

Runtime. During an interactive 3D modeling session, our method
performs probabilistic inference in the learned model to generate a
ranked list of components that may be useful for augmenting the
current shape. The ranking reflects compatibility with components
that are already part of the assembled shape.

In order to evaluate the relevance of the suggestions produced by
the learned model, we have developed a tool for assembly-based
3D modeling. The modeling interface is illustrated in Figure 4 and
in the supplementary video. On the left, the interface presents tabs
with semantic labels such as forso, head, and arm. The tabs can
expand hierarchically to show subcategories, such as lower torso,
upper torso, and belt. When a user selects a tab, the interface shows
a list of parts that belong to the associated category. The user can
select a component and drag it onto the current model. When a
component is added in this way, the lists of categories and compo-
nents are re-ranked to reflect their semantic and stylistic compatibil-
ity with the current 3D model. Using the probabilistic model, the
interface also estimates whether the new component should have
a symmetric counterpart and computes the symmetry plane. The

interface supports sliding any component along the surface of the
model, as well as translation, rotation, scaling, duplication, and glu-
ing, thus assisting the assembly of a 3D model from chosen com-
ponents.

4 Probabilistic Model

Our probabilistic model is designed for the purpose of recommend-
ing components that can augment a given 3D model. The proba-
bilistic model is trained on a set of segmented and labeled shapes.
Each shape is represented by the existence, adjacencies, geomet-
ric style, symmetries, and number of components from each cate-
gory, as described below. These attributes are represented as ran-
dom variables. Each shape is thus treated as a sample from a joint
probability distribution P(X), where X contains the following sets
of variables:

Existence E = {E;} where E; € {0,1} represents whether a
component from category | € L exists in a shape, where L is
the set of component labels in the repository. There is one such
random variable for each label.

Cardinality N = {N;} where N; € {0}UZ" represents the num-
ber of components from category ! € £ in a shape. There is also
one such random variable for each label. For tractable inference,
we limit the range to {0, 1, 2, 3, 4, 5+}, where 5+ represents the
case of 5 or more existing components from the category. Note
that the random variables E represent information for the exis-
tence of components, whereas the cardinality variables N make
it specific in terms of their exact number. The random variables



E are still useful in our model as an intermediate representation,
since the number of components cannot be directly observed in
the user’s incomplete shape. In addition, certain dependencies of
components are more compactly expressed in terms of their ex-
istence rather than their exact cardinality (e.g., a table top exists
when table legs exist, regardless of their exact number), which
helps decreasing the number of parameters in our model.

Adjacency A = {A; s} where A;;» € {0,1} represents whether
a component from category [ € L is adjacent to a component
from category I’ € L in a shape. There is one such random
variable for each pair of distinct labels that appear adjacent in at
least one of the shapes in the repository.

Style S = {S;,:} where S,; € {0, 1} represents whether a com-
ponent of geometric style s € S exists in a shape, where S;
is the set of clusters for category [. There is one such random
variable for each style cluster within each category.

Symmetry R = {R; s} where R, ;» € {0, 1} represents whether
a component from category I € £ has a symmetric counterpart
with respect to a component from category I’ € L. For example,
an arm has a symmetric counterpart with respect to the torso.
There is one such random variable for each distinct pair of la-
bels that have such a symmetry relationship in at least one of the
shapes in the repository.

The probabilistic model encodes the joint distribution P(X). The
purpose of the model is to support estimation of compatibility be-
tween each component from the repository and a given 3D model.
The given model is the current 3D model observed during the run-
time stage. The given model imposes specific values on some ran-
dom variables in X. For example, if the current model contains a
component from category [ and style s, the corresponding random
variables E; and Ss,; are set to 1. Similarly, if a component with
label [ is adjacent to a component with label I’, the correspond-
ing random variable A; ;s is set to 1. Such variables are said to be
observed. The rest of the random variables are unobserved. In addi-
tion, the cardinality random variables are never observed, since we
also do not know the final number of components in the assembled
shape; although unobserved, cardinality variables are important for
querying our model, as explained below.

By performing inference in the probabilistic model, we will com-
pute probability distributions on some of the unobserved variables
given the observed ones, and thus estimate the compatibility of var-
ious components with the currently assembled shape.

Specifically, the compatibility of a component 7 from category I;
and style s; is evaluated based on (a) how likely its category /; is to
be adjacent to any of the categories £ C L existing in the shape,
(b) how likely the shape is to include more parts of category [;, and
(c) how likely the shape is to include components of style s;. Thus,
we need to evaluate, for each component ¢ in the repository, the
probability of the following expression:

( \/ (Al,;,l’ = 1)) A (Nli > nli) A (Ssi,li = 1)7 (1)

Vel

where n;, is the number of components from category /; in the cur-
rent shape. The probability of this query can be evaluated using
the conditional probability distribution P(X, | X. = e), where
X, € X is the set of the random variables involved in the above
query, X. € X is the set of observed random variables, and e are
their observed values. We define the compatibility score of compo-
nent ¢ as

comp(i) = > P(X,=q|X. =e), ¢
qeQ

where @ is the set of instantiations of X that satisfy Expression 1.
The compatibility score measures the suitability of component ¢ for
augmenting the currently assembled shape.

The compatibility score is expressed in terms of the conditional
probability distribution P(X, | X. = e). From the definition
of conditional probability, we have:

P(XQ7X€ = e)

P(XLI|X5:e): P(XE:e) )

3

which can be computed from the joint distribution P(X) by sum-
ming over all possible assignments to the unobserved random vari-
ables:

YL P(Xy, X =e, Xy, =u)

P(Xq | Xe = e) = Zuyq P(Xq — q7Xe — e7xu — u), (4)

where X, = X — X, — X is the set of random variables that
are neither query nor evidence. However, an explicit summation of
this form is generally intractable, since the number of possible as-
signments is in general exponential in the number of variables. The
exponential complexity can be reduced by assuming that all random
variables in X are independent. However, this assumption is gener-
ally incorrect. For example, if the user’s shape contains a quadruped
torso, it is likely that the shape would have other quadruped parts,
such as legs, a head, and a tail. The existence, number, adjacencies,
and style of these parts are dependent on the existence and style of
the torso.

Instead of manually specifying which random variables are prob-
abilistically dependent on which others, we learn the factorization
of the joint distribution from data. This factorization makes the
computation of the compatibility score tractable. The factorized
distribution is represented with a directed graphical model called
a Bayesian network [Pearl 1988; Koller and Friedman 2009]. A
Bayesian network represents the random variables and their con-
ditional dependencies using a directed acyclic graph. Nodes rep-
resent random variables and directed edges represent conditional
dependencies between the corresponding variables. Each random
variable is associated with a probability function that takes as in-
put the set of values of the node’s parent variables and outputs the
probability of this random variable given the input values. Since
our random variables are discrete, these probability functions are
represented as Conditional Probability Tables (CPTs). The proce-
dure for learning the connectivity of the network and the entries of
all the CPTs is described in Section 5. Information on the learned
Bayesian networks used in our experiments is provided in Table 1.

Inference. Given a learned Bayesian network, the joint distribu-
tion can be expressed as P(X) =[], .x P(z | 7(x)), where 7(x)
is the set of parent variables of x. Inference in the Bayesian net-
work can be used to answer conditional probability queries such as
(3). Since exact inference in probabilistic graphical models is NP-
hard, we use approximate inference. We had experimented with
loopy belief propagation [Frey and MacKay 1997], but with lim-
ited success, as it often returned poor approximations to the query
distributions. Instead, we implemented a likelihood-weighted sam-
pling technique that stochastically samples the joint distribution and
weighs each sample based on the likelihood of the observed nodes
accumulated throughout the process [Fung and Chang 1990].

Category ranking. While the compatibility score determines the
ranked order of individual components, the part categories also
need to be ranked as a whole, so that category labels can be pre-
sented in order of relevance by the interface. We achieve this by
evaluating a compatibility score similar to Equation 2 that ignores



the part-specific style term. The score of a part category [ is defined
as
comp(l) = > P(X,=q|X.=e), ©)
qeQ’

where @Q’ is the set of instantiations of X, that satisfy

( \ (A = 1)) A (N> ), ()

lecL’

where £’ C L is the set of categories of components in the current
shape, and n; is the number of existing components from category
.

Initial ranking. The assembled shape is initially empty. There-
fore none of the random variables in X are observed initially. In
this case, we rank the parts and part categories by querying the
prior probabilities P(E;, = 1,Ss,,, = 1) for each part 7 with la-
bel I; and style s;, and P(E; = 1) for each label [. The resulting
category ranking is determined by the frequency of occurrence of
the categories in the repository: the most popular categories appear
first. For example, for a repository of creatures, the top categories
are torsos, legs, and heads. Similarly, the initial ranking of parts
is derived from the frequency of occurrence of style clusters in the
repository.

Symmetry. The probabilistic model also provides information
on whether a chosen component should have a symmetric coun-
terpart. Our implementation supports planar reflective symme-
try, which is among the most prevalent in real-world objects
[Podolak et al. 2006]. For a chosen component ¢ with label /;, we
evaluate, for each observed category I’ in the current shape, the
probability P(R;, v =1 | X. =€), and take the observed cate-
gory Imax that maximizes this probability. If this maximal probabil-
ity is greater than 0.5, the interface generates the symmetric coun-
terpart of ¢ about the symmetry plane of the component with label
Imax. If there are multiple such components, we select the largest
one. If there are multiple symmetry planes for that component,
we select the one that maximizes the projection of the assembled
shape onto it. Symmetry planes are computed using the approach
of Simari et al. [2006].

5 Training

We now describe the offline procedure for learning the entries of
the conditional probability tables for the Bayesian network, as well
as the structure of the network. The input to this procedure is a set
of shapes from a repository. We assume that a small set of man-
ually segmented and labeled models is provided as a training set
for a supervised segmentation and labeling procedure that prop-
agates the segmentations and labelings to the rest of the dataset
[Kalogerakis et al. 2010]. The sizes of the training sets used in our
experiments are reported in Table 1.

We modified the segmentation and labeling algorithm of Kaloger-
akis et al. [2010] to support hierarchical labeling. For each class
of shapes, the modified algorithm learns a conditional random field
(CRF) at each level of the segmentation hierarchy, and generates
a sequence of increasingly refined segmentations of each shape
by successively applying the CRFs in order. The set of geomet-
ric descriptors is the same as in the original algorithm. The ge-
ometric descriptors are computed at surface samples rather than
mesh faces to accommodate polygon soups. A JointBoost classi-
fier [Torralba et al. 2007] is used to output the probability distribu-
tion of labels over each sample. Then the distribution is assigned
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Figure 3: Clusters of head parts, based on a Gaussian mixture
model. The feature space is visualized by projection onto the two
principal axes.

to each mesh face, by averaging the probabilities of labels over its
nearest point samples. The unary and pairwise terms of the CRFs
are defined as in the original algorithm.

Given a segmented and labeled dataset, the method performs clus-
tering to identify groups of geometrically similar parts within each
part category. The method then learns the structure and parame-
ters of the Bayesian network. The balance of this section describes
these two steps in more detail.

Style clustering. For each component ¢ we compute a geometric
feature vector z;. In order to capture a variety of geometric at-
tributes, this feature vector incorporates shape diameter, curvature,
shape context, and PCA descriptors (Appendix A). The clustering
is based on a Gaussian mixture model in the feature space of z,
so that the mixture is a superposition of Gaussian distributions that
have their own covariance structure. The number of Gaussians of
the mixture is estimated by penalizing the complexity of the fitted
mixture model. Specifically, for each part category [, we maximize
the following objective function with respect to the number and pa-
rameters of the mixture model:

my ki
1
J = E log ( E wes, - N (25 s i, Zs’l)> — §Plog(ml)7 @)
i=1 s=1

where m; is the number of parts in category [, k; is the number of
Gaussians of the mixture for I, N'(z; ps,1, Xs,1) is a Gaussian with
mean fi,; and covariance matrix X ;, ws, is the corresponding
mixing coefficient, and P is the number of parameters in the mix-
ture model. The second term penalizes model complexity based on
the Bayesian Information Criterion [Schwarz 1978].

The objective J; is maximized as follows. Starting from k; = 2,
we run expectation-maximization (EM) to estimate the parameters
Ws,1, Ms,1, and Xg ;. If the number of parts k; is less than twice
the number of parameters, we restrict the covariance matrix to be
diagonal to prevent overfitting. EM is initialized with centers com-
puted by k-means. We run EM separately for k; = 3,4,.... If
there is no increase in the objective function for 5 successive repe-
titions, we stop and accept the fitting computed by the EM iteration
with the highest objective function value. The clusters are defined
as follows: each part 7 is assigned to the cluster s that corresponds
to the Gaussian that maximizes ws,; - N'(2z; | pts,1, 25,1). Figure 3
illustrates the clustering of some of the head components from the
creature dataset.



Bayesian network learning. Given training data D, our method
learns the graph structure G and parameters O of the Bayesian net-
work by maximizing the Bayesian Information Criterion score

log P(D | G) =log P(D | G,0) — %vlog(n), ()

where v is the number of independent parameters in the network
and n is the number of shapes in the dataset. The first term is the
likelihood of the parameters © and the second term penalizes model
complexity.

Structure learning is NP-hard and exact algorithms are
super-exponential in the number of variables. Following
Merrell et al. [2010], we use a local search heuristic that explores
the space of network structures by adding, removing, and flipping
edges.

To assist the structure learning procedure, we enforce the existence
of a set of edges that represent obvious conditional dependencies.
For each category [, we establish links from the existential node E;
to the cardinality node NV, as well as to the style nodes {Ss,i }ses,
and the symmetry and adjacency nodes involving this category. If
category [ has subcategories, we also establish links to the existen-
tial nodes of the subcategories.

6 Modeling Interface

To evaluate the presented approach to suggestion generation, we
have implemented an assembly-based 3D modeling interface. Cat-
egories of suggested parts are shown on the left, with individual
parts arranged within categories (Figure 4). The categories and the
parts within each category are ordered based on their compatibility
with the current shape, as computed by the probabilistic model. The
order of the categories and parts is automatically updated when the
composition of the assembled shape changes. The user can select
a part and drag it onto the assembly area on the right, where it is
snapped and glued to the current shape [Schmidt and Singh 2010].

After adding a component, the user can further adjust its position,
orientation, and scale. During these transformations, glued con-
nections are maintained so that the part slides, rotates and scales
on the surface of the rest of the assembly. This reduces the need
for painstaking 6-DOF manipulation of parts. This snap-dragging
can be disabled when desired, which is useful for assemblies with
narrow, irregular or hard-edged boundaries.

When the user drags in a part that has a symmetric counterpart,
the counterpart is automatically generated and transformed with re-
spect to the corresponding symmetry plane. This makes it easier
to position pairs of legs, arms, wings, and wheels. The user can
delink the symmetric pair and position each part individually. Parts
can also be duplicated, reflected and deleted. To support confident
exploration, the interface provides unlimited undo/redo functional-
ity. The interface also provides a search box that supports textual
search for category labels, but participants in our experiments al-
most never used this functionality, preferring visual exploration of
part categories.

The modeling interface is further demonstrated in the supplemen-
tary video. In our experiments, new users became proficient with
the tool after 5 minutes of demonstration and 5 additional minutes
of hands-on exploration. All models in this paper were created after
this minimal training period.

File Edit View
e D OWE
Head  Tail Clothes Spikes an- >
Complete | Misc. Head Parts | < »

Figure 4: Modeling interface. The model is assembled from pre-
sented parts.

7 Evaluation

In this section, we describe an experimental evaluation of the rele-
vance of the components presented by the probabilistic model. The
goal of the experiments was to evaluate the relevance of the pre-
sented components during open-ended 3D modeling.

7.1 Experimental Setup

The presentation of components using the probabilistic model was
compared to two alternative approaches. The first alternative was
a static ordering of categories and parts. The ordering is based on
the prior probabilities of categories and style clusters in the training
data. Thus more frequently used categories and geometric styles
appear first. Static ordering is the approach used in the Spore crea-
ture creator [Maxis Software 2008], where the order of presented
categories and components does not adapt to the current model.
The second alternative was the purely geometric suggestion gener-
ation approach of Chaudhuri and Koltun [2010]. We have modified
the published technique to use the same segmentations as in the
other two conditions, thus the set of components was identical and
only the order of presentation varied across conditions. The same
modeling interface was used in all conditions, so the components
suggested by the approach of Chaudhuri and Koltun [2010] were
also presented by category.

To evaluate the relevance of components presented by the three ap-
proaches, we recruited 42 volunteers from the student body of a
computer science department in a research university. The students
were recruited through departmental mailing lists. Most of the par-
ticipants had little or no prior exposure to 3D modeling. Each par-
ticipant was given a 5-10 minute orientation and was then asked to
perform four modeling tasks. The tasks were of two types:

Toy. A neighborhood toy company asked you to design a children’s
toy that they will manufacture. Create such a toy using the pro-
vided application.

Creature. A neighborhood game company asked you to design a
large number of creatures for an upcoming fantasy game. Create
one such creature using the provided application.

For the Toy assignment, the tool used a large model library with
491 models obtained from the Digimation ModelBank and Archive
collections. The library included models of creatures, aircraft, wa-
tercraft, and furniture. For the Creature assignment, the tool used a
smaller library with 173 creature models. Table 1 provides further
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Figure 5: Results for the Toy task (top) and Creature task (bottom).
The plots on the left show the cumulative distribution of categories
from which parts were chosen, as a function of the ranking of the
category at the time of selection. The plots on the right show the
cumulative distribution of components used by participants, as a
function of the ranking of the component within its category at the
time of selection. The probabilistic model presented more relevant
categories and components than the static ordering or the geomet-
ric approach of Chaudhuri and Koltun [2010].

information on the two datasets.

Generic | Creature

# of database shapes 491 173
# of hand-segmented shapes 180 64
# of categories 62 24

# of unique components 3702 1598

# of style clusters 248 115

# of nodes in Bayesian network 595 265
# of edges in Bayesian network 1224 632

Table 1: Datasets used in the evaluation.

Each participant performed two toy tasks and two creature tasks.
Each task was performed in a randomly chosen condition: compo-
nents presented by the probabilistic model, static ordering, or com-
ponents suggested by the approach of Chaudhuri and Koltun. The
modeling interface was identical in all conditions. The conditions
were not disclosed to the participants, although some differences
were apparent, since in the static condition the order of the pre-
sented components never changed, and in the geometric condition
the suggestion generation process was much longer due to the inten-
sive computational demands of that technique. Several participants
performed less than four tasks due to time constraints. In total, 141
modeling tasks were completed. The average modeling time per
session with the probabilistic model was 21.4 minutes, the median
was 19 minutes, the shortest was 7 minutes and the longest was
56 minutes. The average modeling time was 25.4 minutes with the
static ordering and 34.3 minutes with the approach of Chaudhuri
and Koltun.

The speed of component presentation by the probabilistic model
compared favorably with the approach of Chaudhuri and Koltun.
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Figure 6: Number of components used in a single assembled model
(top) and number of library models that the employed components
originate from (bottom).

We ran parallel modeling sessions during the evaluation, using an
eight-core 2.53 GHz Xeon workstation and a quad-core 3.2 GHz
Core 17 workstation. Inference in the Bayesian network used a sin-
gle core and completed in 2.8 seconds on average. The approach of
Chaudhuri and Koltun used all available cores and required roughly
90 seconds to generate suggestions.

7.2 Results

To evaluate the relevance of components presented by the three ap-
proaches, we have analyzed logs generated by the application for all
modeling sessions. Relevance was evaluated both for the ordering
of categories and for the ordering of parts within categories. Fig-
ure 5 (left) presents the cumulative distribution of categories from
which parts were chosen, as a function of the ranking of the cat-
egory at the time of selection. Thus for the Toy task, 64.6% of
the chosen components were selected from the first 2 categories in
the probabilistic model condition, compared to 23.5% in the static
condition and 21.3% in the geometric condition. For the Creature
task, 75.05% of the components were chosen from the first 2 cat-
egories presented by the probabilistic model, compared to 43.9%
in the static condition and 46.4% in the geometric condition. Fig-
ure 5 (right) presents the cumulative distribution of the components
used by participants, as a function of the ranking of the component
within its category at the time of selection. For both tasks, the prob-
abilistic model outperformed the static ordering and the geometric
approach.

Figure 6 (top) shows the distribution of the number of components
used by participants in their models. On average, participants used
9.9 components for 3D models created with the probabilistic model.
Figure 6 (bottom) shows the distribution of the number of library
models that served as sources of components for each assembled
3D model. On average in the probabilistic model condition, the
components used in single assembled model originate from 5.7 li-
brary models. The average number of components per assembled
model and the average number of source library models per assem-
bled model was similar across the three conditions.

Figures 1 and 7 show 3D models created by participants with the
probabilistic model. The models were created entirely with the
assembly-based 3D modeling interface.
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with individual components and modeling times.

8 Discussion

We have described a probabilistic reasoning approach to the pre-
sentation of components in assembly-based 3D modeling. Our ap-
proach learns a probabilistic graphical model that encodes condi-
tional dependencies between shape components. The model oper-
ates on both semantics and geometric style. During an interactive
modeling session, inference in the probabilistic model is used to
present relevant components.

The probabilistic model can be augmented in a number of ways.
The model represents conditional dependencies in a directed graph.
This captures directed dependencies in the data: when a fuselage
from a commercial jet is added, it “activates” the existence of two
wings and their adjacency to the fuselage, as well as the existence
of two or four engines adjacent to the wings. However, certain re-
lationships can be alternatively modeled by undirected links, which
are more appropriate for representing mutual constraints; for ex-
ample, a fuselage from a commercial jet is unlikely to co-exist with
missiles. Future work could investigate the use of undirected graph-
ical models, such as Markov random fields, or unified models such
as factor graphs. In addition, random variables that represent exis-
tence information could be omitted in favor of a tree-based repre-
sentation for the CPDs at the cardinality variables. Also, the pre-
sented model uses discrete variables, which simplify both learn-

ing and inference; however, geometric style can be more precisely
modeled with continuous variables, which can further increase the
relevance of presented parts. The model can also be augmented
to support a greater variety of symmetries, as well as spatial and
functional relationships between components.

Assembly-based 3D modeling can benefit from im-
proved techniques for consistent shape segmentation
[Golovinskiy and Funkhouser 2009; Kalogerakis et al. 2010]
and for gluing and cutting shapes [Sharf et al. 2006;
Schmidt and Singh 2010]. Sketch-based shape manipulation
algorithms can be integrated to support editing of individual
components [Nealen et al. 2005] and careful meshing techniques
can yield structurally sound models that can be fabricated in
physical form [Shen et al. 2004].

The data-driven approach to three-dimensional content creation
also calls for improved interactive techniques for texturing, rig-
ging, and animating shapes. Our implementation produces static
shapes with no material properties. The ability to easily texture the
assembled models would significantly enhance expressivity. Like-
wise, the ability to easily set up the created models for animation
and simulation would enable users to produce functional content
for computer games and virtual worlds.
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a) mean and variance of the mean curvature over the surface of C'
(the curvature is estimated at multiple scales over neighborhoods of
point samples of increasing radii: 1%, 2%, 5% and 10% relative to
the median geodesic distance between all pairs of point samples on
the surface of M); b) mean and variance of the shape diameter over
the surface of C, and of its logarithmized versions w.r.t. normaliz-
ing parameters 1, 2, 4 and 8; c) the following entries, derived from
the singular values {s1, s2, s3} of the covariance matrix of sample
positions on the surface of C: s1/> ., si, s2/ >, Si, $3/ >, Si
(s1+s2)/ Zl Siy (51+83)/ Z, Si, (82+83)/ ZL Si, S1/82, $1/83,
S2/83, 51/82 + 51/83, 81/82 + S2/83, 51/83 + s2/s3; d) surface
area and volume of C', divided by total surface area and volume of
M e) for each label [ € L, the average geodesic distance between
points on C' and points on M with label [, measuring the proximity
of C' to siblings with label /. Finally, we denoise the data by retain-
ing only the principal components capturing 70% of the variance in
the data.
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