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Visual machine learning is traditionally on 2D images

ImageNet, Deng et al. 2009



Images are 2D grids of pixels

© Julie Waterhouse Photography



2D deep networks do convolution on grids

! Convolution measures “weighted overlap” 
of ! with another function " as it is 
(reversed and) shifted over !
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2D generative models use 2D convolution

Radford et al. 2015, Mirza et al. 2014, Isola et al. 2016, Karras et al. 2018, Brock et al. 2018



But the real world is (at least) 3D

Google



Synthesizing 3D shapes is widely important

CAD/CAM 3D modeling for AR/VR/entertainment

Fabrication Architecture and interior design

Microsoft; Adobe; Schumacher et al. 2015; IKEA



Point cloud Polygon mesh Voxel grid

Rigged skeleton Wires and 
patches

Part and object 
assembly

And 2D convolution doesn’t extend directly to most of them !!
(no grid structure with common parametrization)

! !
! ! !

"

Many ways to represent 3D shapes



Some representations are structure-aware

Point cloud Polygon mesh Voxel grid

Rigged skeleton Wires and 
patches

Not
structure-aware Structure-aware

Part and object 
assembly



Shape structure: what and why?
• What: Low-dimensional 

semantic/functional abstraction (parts, 
layouts, deformations...)

Agrawala et al. 2003



Shape structure: what and why?
! What: Low-dimensional 

semantic/functional abstraction (parts, 
layouts, deformations...)

! Why is structure useful for shape 
generation?
! Low-dimensional: less training data, more 

captured variability
! Explicit factorization assists learning, model 

architectures can be decoupled
! High-quality output: e.g. synthesize novel 

structure, reuse fine-grained part geometry
! Output pre-rigged for high-level modeling

Mo et al. 2019

VAE latent space interpolation, with
and without structure-aware model



Many ways to generate 3D shapes

Point cloud Polygon mesh Voxel grid

Rigged skeleton Wires and 
patches

Achlioptas et al. 2017

Part and object 
assembly



Many ways to generate 3D shapes

Point cloud Polygon mesh Voxel grid

Rigged skeleton Wires and 
patches

Ranjan et al. 2018

Part and object 
assembly



Many ways to generate 3D shapes

Point cloud Polygon mesh Voxel grid

Rigged skeleton Wires and 
patches

Wu et al. 2015

Part and object 
assembly

Focus of this talk



Structure is commonly described by (hyper-)graphs

! Parts (vertices)
! Discrete and continuous variation

Back

Seat
Arm

Arm

Control plate

Hydraulic stem

Base

Casters

Martin Hargreaves, TechViz



Structure is commonly described by (hyper-)graphs

! Parts (vertices)
! Discrete and continuous variation

! Layout relationships (edges)

Martin Hargreaves, TechViz

ReflectiveReflective
symmetry

Coaxial

Adjacency

Rotational 
symmetry



Structure is commonly described by (hyper-)graphs

! Parts (vertices)
! Discrete and continuous variation

! Layout relationships (edges)
! Hierarchical

Martin Hargreaves, TechViz



Structure is commonly described by (hyper-)graphs

! Parts (vertices)
! Discrete and continuous variation

! Layout relationships (edges)
! Hierarchical

! Motion

Martin Hargreaves, TechViz

Tilt

Rotate around 
vertical axis

Rotate around 
horizontal axis

Raise



Structure is commonly described by (hyper-)graphs

! Parts (vertices)
! Discrete and continuous variation

! Layout relationships (edges)
! Hierarchical

! Motion
! Function

Martin Hargreaves, TechViz

attributes



Structure is commonly described by (hyper-)graphs

! Parts (vertices)
! Discrete and continuous variation

! Layout relationships (edges)
! Hierarchical

! Motion
! Function
! Text and other annotations

Martin Hargreaves, TechViz

attributes

The web of interdependencies is typically too 
complex to specify by hand. Hence, it is learnt

from a repository of exemplar structures



Learning generative models of shape structure
!

Learning generative models over spaces of graphs

! Each point in the space is a graph
! Can’t assume fixed topology



What is a generative model?

• Let x be observed data (e.g. shape) and y be target data (e.g. label)
• The distribution P(y | x) is a discriminativemodel
• No way to sample x itself
• Great for vision applications where we need to predict class etc (y) for an 

observed object (x)

• The distribution P(x, y), or just P(x), is a generativemodel
• Samplers like MCMC or GAN/VAE can sample x according to the distribution
• Great for graphics applications where we need to synthesize new objects!
• P(x | y) is a conditional generative model, e.g. y is a sketch and x is the 

corresponding 3D shape
Focus of this talk!



! If ! is high-dimensional, !"!% can be very complicated
! Often, it can be written as a product of smaller, independent factors

!"!%$'$!"!( #$#(%$) !"!* #$#*%$) +$) !"!1 #$#1%
where !(+$!1 and (potentially empty) #(+$#1 are subsets of the 
variables of !
! A graphical model visually interprets this factorization as a graph

Probabilistic graphical model
Factor graph, Bayesian network, Markov random field…
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A graphical model for assembling existing parts
Part graph encoded with fixed number of variables, layout is deterministic

Kalogerakis, Chaudhuri, Koller and Koltun, 2012

Shape style " ./

Number of parts
from a category
" 012# ./

Part style " 012# ./

Continuous part features " 34 Discrete part features " .0

(Lateral 
edges not 
shown)

Latent (unobserved) 
variables modeling 
shape “style”



Sampling the learned model

Kalogerakis, Chaudhuri, Koller and Koltun, 2012



Kalogerakis, Chaudhuri, Koller and Koltun, 2012

Sampling the learned model

Learned latent component “styles”

Learned latent shape “styles”



Kalogerakis, Chaudhuri, Koller and Koltun, 2012

Sampling the learned model



Kalogerakis, Chaudhuri, Koller and Koltun, 2012
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Sampling the learned model



Kalogerakis, Chaudhuri, Koller and Koltun, 2012

Sampling the learned model



Shapes have natural hierarchical structure

Wang et al., 2011

Hierarchical 
grouping driven 
by cognitive or 
functional 
imperatives



Probabilistic context-free grammars
! PCFGs are “dynamic” graphical models
! Set of expansion rules, each with a probability

56786 4$"
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&$ 567889$=>?@8AB; & "1<C%
&$ 5D88E; "1<,%

Talton et al., 2012
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Learning a PCFG from exemplar hierarchies

Exemplars

Most general Most specific

S⟶ (      |       |      ) S
0.25

S⟶ (      |       |      |      ) S
0.25

……

S⟶ ???

…

Bayes-optimal:
arg max P(X | G) P(G)

P(X | G) favors grammars which are likely to produce the exemplars
P(G) favors grammars which are compact (model prior)

Talton et al., 2012



Learning a PCFG from exemplar hierarchies

Exemplars

Most general Most specific

S⟶ (      |       |      ) S
0.25

S⟶ (      |       |      |      ) S
0.25

……

S⟶ ???

…

Bayes-optimal:
arg max P(X | G) P(G)

Optimal grammar G* is learned by Bayesian model merging
• Start with most specific grammar
• Explore more general (compact) grammars by merging and 

splitting nonterminals to improve P(X | G) P(G) via MCMC
Talton et al., 2012



Shapes sampled from learned grammars

Exemplars

Sampled
Talton et al., 2012



Shapes sampled from learned grammars
Exemplars

Sampled
Talton et al., 2012



Deep generative models of 3D structure
! Classical graphical models are hard to scale to complex, high-

dimensional spaces with significant structural variation
! Deep neural networks are powerful high-dimensional models, but do 

not lend themselves naturally to non-grid-structured (“irregular”) 
domains such as part layouts and scene graphs
! Elegant adaptations for low-level, non-structure-aware 3D representations 

have been developed

Convolution on curved manifolds Permutation-invariant NNs Convolution on octrees Implicit field NNs

Masci et al. 2015, Qi et al. 2017, Riegler et al. 2017, Wang et al. 2017, 2018, Chen et al. 2019



Incremental synthesis from existing parts
! “Recurrently” construct the shape one part at a time

! Each new part is chosen and placed (by trained networks) to complement the 
partially constructed shape

! Greedy strategy, avoids joint optimization over the whole structure

Sung, Su, Kim, Chaudhuri and Guibas, 2017



Encoding graphs as trees

• Edges of a graph can be collapsed sequentially to form a tree
• Each node of the tree has an associated n-D feature vector, computed 

recursively
• The process can be reversed to reconstruct the graph (modulo cycles)

Graph represents layout of parts in 3D shape



Recursive neural networks (RvNN)

! Repeatedly merge two nodes into one

! Each node has an n-D feature vector, 
computed recursively

# '$3;"<;5/(L/*;$/$&%
! End up with a fixed n-D vector for the 

root node, encoding the whole tree

Socher et al. 2011



GRASS: Encoding 3D part graphs with RvNNs

Adjacency 
encoding

Symmetry 
encoding

Refl. sym.Refl. sym.

3="2(&$2*% 3="2(&$2*%

3="2(&$2*%

3="2(&$2*% 3="2(&$2*%

3="2(&$2*%

3>"2%3>"2%

Li, Xu, Chaudhuri, Yumer, Zhang and Guibas 2017



A classifier trained in parallel tells us whether to split a 
node into two adjacent parts, or into a symmetric group

A recursive autoencoder

Li, Xu, Chaudhuri, Yumer, Zhang and Guibas 2017

Input: collection of 
unlabeled parts



+ +…+ !

Making the model generative:
Variational Autoencoder (VAE)

Li, Xu, Chaudhuri, Yumer, Zhang and Guibas 2017



Variational Autoencoder Generative Adversarial Network

Real structures

Making the VAE robust
! Adversarial training (VAE-GAN):

! Discriminator tries to tell plausible structure (training hierarchy) from 
implausible one

! Generator tries to fool discriminator by mapping random codes to 
plausible structures

Li, Xu, Chaudhuri, Yumer, Zhang and Guibas 2017



Some applications of shape RvNNs

LXCYZG 2017, ZXCYZ 2018, LPXCKSTCCZ 2019

Shape interpolation and synthesis Scene synthesis

Shape composition Evolving shape collections Scan reconstruction



Extending RvNNs with 4-ary merges
Mo et al. 2019

Graph convnets
encode/decode 
variable-degree 
nodes

St
ru
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ur
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Modeling fine-grained geometry
! RvNNs are powerful models of layout variability, but not (yet) of fine-

grained local geometry
! Huang et al. [2015] developed a structure-aware surface generator, 

using a Deep Boltzmann Machine



Modeling fine-grained geometry
! SDM-Net [Gao et al. 2019] models parts as deformed boxes, and 

chains a part VAE with a simple structure VAE

Input PSG AtlasNet SDM-Net



Takeaways

! Structure is an efficient low-dimensional factorization that captures 
rich shape variation

! Modeling structural variation requires new (or newly borrowed) 
learning architectures

! Structure-aware generation produces
annotated, high-level-editable output
“for free”

! Models of semantic and functional intent
can layer on top of structural shape priors
[UIST ’13, SIGGRAPH ’15]



Research Directions

! Richer structural models
! Domain-specific architectures
! Probabilistic program induction

! Easier training
! Weakly/semi-supervised training
! Few-shot generalization with domain knowledge

! Richer objectives
! Linking structure with physical materials and 

fabrication constraints
! Function, motion, language

! furniture
! mechanical assemblies
! drug design …

(infer structure without 
training structures)

Lilian van Daal; American Chemical Society; Hu et al. 2018; Xu et al. 2019



For much more, see 
our forthcoming 
Eurographics
State-of-the-Art 
Report (STAR)

http://www.cse.iitb.ac.in/~sidch

http://www.cse.iitb.ac.in/~sidch



