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Visual machine learning is traditionally on 2D images

vehicle — craft —  watercraft —— sailingvessel ——  sailboat —  trimaran

ImageNet, Deng et al. 2009
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2D deep networks do convolution on grids
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Radford et al. 2015, Mirza et al. 2014, Isola et al. 2016, Karras et al. 2018, Brock et al. 2018

2D generative models use 2D convolution
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But the real world is (at least) 3D
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Microsoft; Adobe; Schumacher et al. 2015; IKEA

Synthesizing 3D shapes is widely important

Fabrication Architecture and interior design



Many ways to represent 3D shapes
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Point cloud Polygon mesh

X X \/ Rigged skeleton Wires and Part and object
X patches assembly

X X

And 2D convolution doesn’t extend directly to most of them &
(no grid structure with common parametrization)



Some representations are structure-aware

Point cloud
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Polygon mesh Voxel grid

Not
structure-aware

Rigged skeleton

Wires and

Part and object
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assembly
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Agrawala et al. 2003

Shape structure: what and why!?

1 2

* What: Low-dimensional
semantic/functional abstraction (parts,
layouts, deformations...)




Mo et al. 2019

Shape structure: what and why!

* What: Low-dimensional

semantic/functional abstraction (parts, source
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layouts, deformations...)

* Why is structure useful for shape
generation!

* Low-dimensional: less training data, more
captured variability

* Explicit factorization assists learning, model
architectures can be decoupled

* High-quality output: e.g. synthesize novel
structure, reuse fine-grained part geometry VAE latent space interpolation, with

o Output pre-rigged for high-level modeling and without structure-aware model




Many ways to generate 3D shapes

Point cloud Polygon mesh Voxel grid

Rigged skeleton Wires and Part and object
patches assembly

Achlioptas et al. 2017




Many ways to generate 3D shapes
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Ranjan et al. 2018

Rigged skeleton

Wires and
patches

Part and object
assembly



Many ways to generate 3D shapes
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Rigged skeleton Wires and Part and object
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Wu et al. 2015
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Martin Hargreaves, TechViz

Structure is commonly described by (hyper-)graphs

* Parts (vertices)
e Discrete and continuous variation
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* Layout relationships (edges)

Adjacency

® Rotational

\-VB / symmetry
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* Parts (vertices)
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* Layout relationships (edges)
* Hierarchical

* Motion

Rotate around
vertical axis

Rotate around
horizontal axis
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 Text and other annotations

The web of interdependencies is typically too
complex to specify by hand. Hence, it is learnt
from a repository of exemplar structures

®

Fix chair back into place
using four screws and
add plastic caps.

@

Attach chair seat onto
control plate using 4 screws
with spring washers.

®

Attach arms to chair
seat using four screws
and plastic caps.

@ ?

Push control plate onto hydraulic
stem until it clicks into place.

@

Attach five castors to base.
Push firmly until they click
into place.




Learning generative models of shape structure
&

Learning generative models over spaces of graphs

ONLh 8

Ring Mesh Star Fully Connected

cscsce N &%

Line Tree

* Each point in the space is a graph

* Can’t assume fixed topology



What is a generative model!

* Let x be observed data (e.g. shape) and y be target data (e.g. label)

* The distribution P(y | x) is a discriminative model
* No way to sample x itself

* Great for vision applications where we need to predict class etc (y) for an
observed object (x)

* The distribution P(x, y), or just P(x), is a generative model <

* Samplers like MCMC or GAN/VAE can sample X according to the distribution
* Great for graphics applications where we need to synthesize new objects!

* P(x | y) is a conditional generative model, e.g. y is a sketch and X is the

corresponding 3D shape _
Focus of this talk!



Probabilistic graphical model

Factor graph, Bayesian network, Markov random field...

* If x is high-dimensional, P(x) can be very complicated
* Often, it can be written as a product of smaller, independent factors
P(x) = P(x; | X;) X P(X, [ X5) X ... X P(x | %)

where x;... X; and (potentially empty) X;... X, are subsets of the
variables of x

* A graphical model visually interprets this factorization as a graph
P(x3 | x1)
P(x) = P(xs | x2, x3)
<v % Pl | x)
x P(xp [ x1)
— P (x4 | X2, x3) x P(x;)

P(x; | x1)



Kalogerakis, Chaudhuri, Koller and Koltun, 2012

A graphical model for assembling existing parts

Part graph encoded with fixed number of variables, layout is deterministic

Latent (unobserved)

Sh tyle € Z* . :
° ape style variables modeling
et shape "style”
Number of parts ° Part style € {O}U Z*
from a category
e {0}U Z"

(Lateral

edges not

shown)
L

Continuous part features € R" Discrete part features € 7"

P(X)=P(R)|] [P(S: | R)P(Ni | R,n(Ni))P(Cq | St,w(C1)) P(Dy | Si,w(Dy))]

lel



Sampling the learned model

Kalogerakis, Chaudhuri, Koller and Koltun, 2012
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Sampling the learned model

Kalogerakis, Chaudhuri, Koller and Koltun, 2012



Sampling the learned model
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Sampling the learned model

Kalogerakis, Chaudhuri, Koller and Koltun, 2012



Sampling the learned model
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Shapes have natural hierarchical structure

Hierarchical
grouping driven
by cognitive or
functional
iImperatives

Wang et al., 201 |



Probabilistic context-free grammars

* PCFGs are “dynamic” graphical models

* Set of expansion rules, each with a probability

START : G

G — [Floor Door] F (1.0)
F — [Floor Windows] FF (0.6)
F — [Roof] (0.4)

P(x)=1.0 x 0.6 x 0.4

Talton et al., 2012



Learning a PCFG from exemplar hierarchies

~ Exemplars

__;; 55%- =Eﬁ.E... ===

0.25 0.25
S5 (mm |mm |mm) S S — 297 s—>(-|-|=|=)s
Most general Bayes-optimal: Most specific

arg max P(X'| G) P(G)

P(X'| G) favors grammars which are likely to produce the exemplars
P(G) favors grammars which are compact (model prior)

Talton et al.,, 2012



Learning a PCFG from exemplar hierarchies

~ Exemplars

__;; 55%- =Eﬁ.E... ===

0.25 0.25
S5 (mm |mm |mm) S S — 297 s—>(-|-|=|=)s
Most general Bayes-optimal: Most specific

arg max P(X'| G) P(G)

Optimal grammar G* is learned by Bayesian model merging

* Start with most specific grammar

* Explore more general (compact) grammars by merging and
splitting nonterminals to improve P(X | G) P(G) via MCMC

Talton et al.,, 2012



Shapes sampled from learned grammars

Exemplars

Sampled

Talton et al., 2012



Shapes sampled from learned grammars

Exemplars

Sampled

Talton et al., 2012



Masci et al. 2015, Qi et al. 2017, Riegler et al. 2017,Wang et al. 2017, 2018, Chen et al. 2019

Deep generative models of 3D structure

* Classical graphical models are hard to scale to complex, high-
dimensional spaces with significant structural variation

* Deep neural networks are powerful high-dimensional models, but do

not lend themselves naturally to non-grid-structured (“irregular”)
domains such as part layouts and scene graphs

* Elegant adaptations for low-level, non-structure-aware 3D representations
have been developed

normal field

Convolution on curved manifolds

Permutation-invariant NNs Convolution on octrees Implicit field NNs



Sung, Su, Kim, Chaudhuri and Guibas, 2017

Incremental synthesis from existing parts

* “Recurrently” construct the shape one part at a time

- S 445V
viif v

* Each new part is chosen and placed (by trained networks) to complement the
partially constructed shape

* Greedy strategy, avoids joint optimization over the whole structure



Encoding graphs as trees

* Edges of a graph can be collapsed sequentially to form a tree

* Each node of the tree has an associated n-D feature vector, computed
recursively

* The process can be reversed to reconstruct the graph (modulo cycles)

z = :7-»[/]-» O

\

\
\
N\

~ = Graph represents layout of parts in 3D shape



Recursive neural networks (RvNN)

Repeatedly merge two nodes into one

Each node has an n-D feature vector,
computed recursively

p=f(Wlcje,] +b)

End up with a fixed n-D vector for the
root node, encoding the whole tree

we P
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Parsing Natural Language Sentences

S

P A small crowd
e - .1 quietly enters
NP_- VP_- — NP ! :
sI3ea e s the historic
A small quietly QP Ehiurch
crowd enters Det, éf,'g "~ _N. Semantic
A Representations
‘ ‘ O ‘ ‘ Indices
the | |historic/ |church| Words
Parsing Natural Scene Images
.o
Grass— - People Building~ ———Tree
ff’ \\‘ ff" \\\ ’ R ‘ ,": \\\.
J \ / \ \ ) /
f” — . ."‘-‘-. ™
_,-” - b - Semantic
. (TP ‘%mﬁ‘ **#:2***" Representations
{\‘gmngu “nnm_u_ ’:mu_m ‘\M‘ Features
| A S & |77 sSegments




Li, Xu, Chaudhuri, Yumer, Zhang and Guibas 2017

GRASS: Encoding 3D part graphs with RvNNs
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Li, Xu, Chaudhuri, Yumer, Zhang and Guibas 2017

A recursive autoencoder

Input: collection of

unlabeled parts n-D root code

X

)

Q

O

O

©
encoder RvNN dec:r:n.:haw‘-E .
:llllllIlllllll"L — ||X_Xf||2.‘.ulnll--:;lll;

A classifier trained in parallel tells us whether to split a .
node into two adjacent parts, or into a symmetric group



Li, Xu, Chaudhuri,Yumer, Zhang and Guibas 2017

Making the model generative:
Variational Autoencoder (VAE)

z;~N(u, a)

Q f, .
Q=0 R O
= ne(x) =" 10
H B O“fo/D f >’{ — O}) Bi"‘o —
o il o<




Li, Xu, Chaudhuri, Yumer, Zhang and Guibas 2017

Making the VAE robust

 Adversarial training (VAE-GAN):

« Discriminator tries to tell plausible structure (training hierarchy) from
implausible one

« Generator tries to fool discriminator by mapping random codes to
plausible structures

. Real structures

e O zs~N(u,0)
g 3 O,OEnc(x) }’ —H '“8:.'0 6@ O g i
nc | | G D

Variational Autoencoder z.~p(2) Generative Adversarial Network



LXCYZG 2017, ZXCYZ 2018, LPXCKSTCCZ 2019

Some applications of shape RvNNs

Shape composition Evolving shape collections Scan reconstruction



StructureNet

Mo et al. 2019

Extending RvNNs with n-ary merges
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Modeling fine-grained geometry

* RvNNs are powerful models of layout variability, but not (yet) of fine-
grained local geometry

* Huang et al. [2015] developed a structure-aware surface generator,
using a Deep Boltzmann Machine

fuselage left wing vertical stabilizer
variables variables variables




Modeling fine-grained geometry

* SDM-Net [Gao et al. 2019] models parts as deformed boxes, and
chains a part VAE with a simple structure VAE

L
| T W
) S - |

Input PSG AtlasNet SDM-Net




Takeaways

Structure is an efficient low-dimensional factorization that captures
rich shape variation

Modeling structural variation requires new (or newly borrowed)
learning architectures

Structure-aware generation produces
annotated, high-level-editable output
“for free”

Models of semantic and functional intent

can layer on top of structural shape priors
[UIST 13, SIGGRAPH *1 5]




Lilian van Daal; American Chemical Society; Hu et al. 2018; Xu et al. 2019

Research Directions

* Richer structural models
* Domain-specific architectures
* Probabilistic program induction

¢ Ea5|er tralnlng (infer structure without

* Weakly/semi-supervised training training structures)
* Few-shot generalization with domain knowledge

* Richer objectives

* Linking structure with physical materials and .
fabrication constraints o

* Function, motion, language Fary
* furniture , ' *35
. . -
* mechanical assemblies (X -
* drug design ... * a;;:-:i:?
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For much more, see Learning Generative Models of 3D Structures
our forthcoming
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