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Shapes are everywhere!

MakerBot Replicator2
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MakerBot Industries



Shapes are everywhere!

AFRL Discovery Lab/Aurora Flight Sciences



Shapes are everywhere!

Original Scene Ground Truth Labels Predicted Labels

Saxena Lab, Cornell/Stanford



Shapes are everywhere!

@

% 00.00 MPH

CTE: +0.19 m

Y
s,

Google Inc.



Shape Representations

Volumetric




“Low-Level” Geometric Analysis

Geodesics

Curvature



Gaussian Curvature

Positive

Negative

Jhausauer@wikipedia



Gaussian Curvature

Positive  Negative
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Can a 2D ant on a 2D surface tell if it lives In a
space of positive, negative or zero curvature?

Can a person, in 3D?

Yes, by measuring distances!



Gemmer and Venkataramani, 2013



after 12 days

Sharon et al. 2004



Sharon et al. 2004



“Low-Level” Geometric Analysis

ms (vertices) rms (faces)
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Spectral Decomposition



Matrices as transformations

Let 4 be an nxn matrix

* |t can be thought of as a function that

maps a vector x € R" to a vector Ax€ R” %

A 1s a linear transformation

e fis linear If fla+ b)=fa)+Ab)
An eigenvalue of 4 Is a scalar
A such that

AX = /X

where x Is some n-D vector

X iS the Corresponding eigenvector Blue arrow is eigenvector of shear

transform, red is not



Functions as vectors

e Functions from 4 to B form a vector space: we can
think of functions as “vectors”

e E.g. we can commutatively add two functions:
Jte=gt/f
e Or distribute multiplication with a scalar: s(f+ g) = sf+ sg

e A function f can be discretized to an n-D vector of
sampled values: [ f(x)), f(x,), ..., f (x,)]

Continuous function f _ _
0 1
Discrete apprOX|mat|onf _ , | , , ] _

1 2 3 4 5 6 7 8 9 10 1 12 13 14




Linear operators

* An operator 7 is a mapping from a vector space U to
another vector space V

e T'i1s a linear operator if 7(a + b) = 1(a) + 1T(D)

e The set of functions F from domain 4 to codomain B Is a
vector space

* So we can have operators 7' that map from one function space
F to another function space G

e Note that T maps functions to functions!
. ... d d & .
* The differentials ,—, 5 etc are linear operators
dx dx dx

 They map functions to their derivatives




Eigenfunctions of operators

* An eigenvalue of a linear operator 7 that maps a
vector space to itself is a scalar 4 s.t.

1(x) = AX
and x Is the corresponding eigenvector

e If 7' maps functions to functions, then we call x an
eigenfunction: 7(f) = Af



Discrete Linear Operators

 Theorem: Any linear operator between finite-
dimensional vector spaces can be represented by a
matrix

* Let's say we have a set of functions F from 4 to B

e The discrete versions of the functions form a finite-
dimensional vector space F* equivalent to R"

— Each function is sampled at the same finite set of points

Let 7 be a linear operator from F to itself

... and T* be a “discrete version” of T acting on F*

Then T* can be represented by a nxn matrix (cf. theorem)



Example: Discrete Derivative

Continuous Discrete
e Function: f . e Vector: f=[ {x,), fix,) ... fix,)]
» Operator: di .« Matrix:
X :
-1 1 0 0O O
: 0O -1 1 0 0
. ' 1 0 -1 0O O
* Applying operator: A=ql . :
: 0 0 ~1 1
df _po 50 . o4
d x ; '

* Applying matrix:
Af=1"



Example: Discrete Derivative

Continuous Discrete




Example: Discrete 2™ Derivative

Continuous ! Discrete
e Function: f . e Vector: f=[ {x,), fix,) ... fix,)]
- Operator: 4" .« Matrix:
dx’ :
-2 1 0 0 0
: 1 -2 1 0 0
: : _ 1 1 =2 0 0
* Applying operator: b=y
, : 0 0 -2 1
Ef 0 0 w1
dx’ '

* Applying matrix:
LE=f"



Operators in higher dimensions

* The underlying function space can have a higher-
dimensional domain

r ‘ -4 1 - 1 .

1 —4 1 : 1 : :

1 —4 : 1 .
B u 1 - - -4 1 - 1 - .
Continuous function . 1 : 1 -4 1 y 1 .
.1 - 1 —4 .1
r ™ 1 . . a1
.1 -1 -4 1
.1 1 —4 |

R

Discrete approximation

2D discrete Laplace operator




Interpreting eigenfunctions

» Eigenvalues of a linear operator form its spectrum

* The eigenfunctions are unchanged (except for
scaling) when transformed by the operator

e Think of them as standing waves on the domain

° Eg
2 .
d 51n(2nX) — _n? % sin(nx) d’e’™”
d x 2 = A3 e
dzcos(nX> "

T = —n° X cos(nx)



Interpreting eigenfunctions

* The eigenfunctions of the operator form a basis
for the function space

2
e E.g. the sinusoidal eigenfunctions of d—2 form the

. . d x
Fourier basis

Eigenwalue - o0.000000 Bgemwalus - w(.00023 Slgenwalus . w(000123 Blgenwalie b a(0DCHE
e L& ot @1
i1 05 0 00
o g
i, =005 =0 =300
- -1 =01 2.
. W0 200 300 400 ? Wwr 200 W00 40 0 00 00 40 g wr 0 0 40
Sipvealus 7 « 0000401 Sigenralus 7.« 0001105 Sigenralus 2« 2001103 Slperwaiin b« LOP126F
*1 *1 U8 *1
s 00 Ll
@ g
= =0 =003
={.1 =g 1% =g, 1% =018
W Wo W g wr 200 30 N0 w0 e W 40 1w I AW 4w

The first 8 sinusoidal eigenfunctions of the second derivative operator.
The eigenvalues are the negative squared frequencies.



Operators on manifolds

 We can define a function on ’N ”z
: ) e
a manifold curve/surface! _ 14
e E.g. the coordinate function: ‘Y',g y
gives the (X, Y, Z) position of L % /]
a point on the surface '\ ’

e A common operator Is the

Laplace-Beltrami operator ; t, &

e |ts eigenfunctions define a

basis for functions over the & 5 5
surface ’Ml !; b et




Levy and Zhang

Eigenfunctions of Laplace-Beltrami

* Intrinsic basis for %4“‘/!&:/;\3 “’ﬁ}: :'f\:

functions over
surface

2090
| -~ U WY
under iIsometry ._:: “

» We can discretize it ‘m*'”@"‘
as usual: the ‘\' "\ /g
function Is defined J ---
at a fixed set of

sample points on
the shape

* Doesn’t change




Levy and Zhang, Ovsjanikov et al.

Eigenfunctions of Laplace-Beltrami

* The spectrum of the L-B operator characterizes
the intrinsic geometry of the shape

» [wo shapes related by isometry have the same
Laplace-Beltrami spectrum

o xles




Expressing a function with eigenfunctions

e Continuous:

Jp)=w0(p) Tt w,ex(p) + ... T W,0,(p)

e Discrete:

[ E117] T E1n [ E11 voe BHin] 217
n Esq Es, Ezy ... Fa, r2 ”
X —ZU{-I’: = ; ri1+ ...+ : oy = : : ; : = FX
- | B E Bai voi Bond Lzl
X =FETX
The spectral transform
- "I‘ ~
r; —e; -X
? =———————"—&
X X
Projection of X Spatial Spectral
along eigenvector domain domain



Reconstruction in 2D

e More accuracy with more eigenfunctions

e Function iIs the coordinate function

* We're reconstructing the extrinsic shape of the object



Levy and Zhang

Reconstruction in 3D

* More accuracy with more eigenfunctions

e Function iIs the coordinate function

* We're reconstructing the extrinsic shape of the object

(h) % = 300. () k=200,  (d) k= 100,

(£) ke = 10, (g) fo=", (L) ke = 3.




“Mid-Level” Geometric Analysis

Parametrization

ﬁ

a

Deformation




Funkhouser; Feng, Liu, Gong

Shape Descriptors

Global

* A shape descriptor is a set of numbers
that describes a shape in a way that Is

e Concise

e Quick to compute

« Efficient to compare
e Discriminative

e Global descriptors describe whole objects

e Local descriptors describe
(neighborhoods around) points

 Typically, the descriptors form a vector
space with a meaningful distance metric
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Chen et al., “On Visual Similarity Based 3D Model Retrieval”, 2003

LFD: a classic global descriptor

* The Light Field Descriptor (LFD) of a 3D shape is a set
of 2D images of it, taken with a camera array

» E.g. 20 cameras positioned at the vertices of a regular
dodecahedron

* Images rendered as silhouettes,
so 10 unique views (say from a
hemisphere)

 Instead of the actual images,
store their Zernike Moments
and Fourier Descriptors

e Compare shapes over all possible
relative rotations of image clouds




Retrieval Results

—a— LightField Descriptor 3D Harmonics:
3D Harmonics spectral signature of
) ‘ _ the shape

—aA— Shape 3D Descriptor

| —¢—Multiple View Descriptor |

Shape 3D Descriptor:
curvature histograms

Multiple View
Descriptor: align
shapes using PCA,

»
e o
s - = -

L.. L ........

0 compare views along
principal axes

00 0.1 02 03 04 05 06 07 08 09 1.0
Recall

Test database: 1833 shapes, with 549 shapes classified into 47 functional
categories, the remaining shapes classified as “miscellaneous”



What If we use better image descriptors?

« ZMD/FD are ok, but hardly the state of the art In
modern computer vision (circa 2016)

e Convolutional Neural Nets (CNNs) have
revolutionized image recognition tasks

Model Top-1 | Top-5

Sparse coding [2] | 47.1% | 28.2%
SIFT + FVs [24] | 45.7% | 25.7%
CNN 37.5% | 17.0%

In 2012, the error rate in the ImageNet visual recognition

challenge was halved by a deep CNN (gains are typically

incremental). There are 1000 categories: the baseline of
random guessing would have a 99.9% error.



What i1s a Convolutional Neural Network?

* Imagine we have a set of N samples from some
signal

 We want to produce a prediction, e.g. whether the
signal represents a human voice, or a picture of a
cat, or a depth image of a building



What i1s a Convolutional Neural Network?

* We can compute the probability as a function F' of
these values

* In a fully-connected network, the function takes in all the
inputs at once, e.g. as g(w-X), where w is a weight vector
and g 1s some nonlinear transformation such as a sigmoid

function

T
F

j
6666006000




What i1s a Convolutional Neural Network?

* Fully-connected networks have some drawbacks

* The function is very high-dimensional (all inputs processed at once)

* No complex relationships between inputs are modeled (just a dot
product)

* Local information is not captured in a “translation-invariant” way
(a feature of the signal at the left end of the sequence must be
learned independently of the same feature occurring at the right end)

S

6666006000




What i1s a Convolutional Neural Network?

» Solution: a convolutional layer

* A filter (again, a dot product followed by a nonlinear
transformation) is applied on local neighborhoods of
the signal

T
Fz\l
Al Al A Al Al Al Al |A
A A




What i1s a Convolutional Neural Network?

 All filters share the same weights!
* Dramatically reduces number of parameters of the network

* The final output Is a function of the filter responses

T
Each A nod
h:g ther:;rr?e r F \I
set of 2

weights A A A A A A




What i1s a Convolutional Neural Network?

* We can make the neighborhoods larger, to capture
broader local features




What i1s a Convolutional Neural Network?

e Convolutional layers are composable: they can be stacked with
each layer providing inputs for the next layer

» Higher layers can capture more abstract features since they effectively
cover larger neighborhoods, and combine multiple different nonlinear
transformations of the signal

T
Another set r F \|

of weights
for all B
nodes

One set of
nodes

Christopher Olah




What i1s a Convolutional Neural Network?

e To make the network robust to small translations In
detected features, and to reduce the amount of
redundant data fed into higher layers, we introduce

pooling layers t
F
A

Return the max of

the inputs \
4




What is a Convolutional Neural Network?
* The signal can be 2D or 3D: the filters are now also

S ) oD e S

I Trs 5
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ﬂl
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PV

s all essentially the same

2D/3D, but it’

Christopher Olah



What i1s a Convolutional Neural Network?

* The function computed by this gigantic model is
differentiable* w.r.t. the weights

* Given training data and a loss function measuring the
deviation between predicted and actual values, we can
optimize the weights by gradient descent

* The gradient of the loss function can
be found efficiently by a method
called back-propagation

......
- e e e s emms |

* nearly everywhere



A real-world CNN

* 5 convolutional layers, 3 max-pooling layers, 3

fully-connected layers

* ~60 million parameters (despite the weight
sharing!)
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Using the CNN for classification

mite

musnroom

erry

Cﬂl‘ltﬂll‘lEr sni eopard
mite container Irip or scooter leapard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

lagascar cat

vertible agaric dalmatian i I monkey
grille mushroom grape spider monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey

Krizhevsky, Sutskever and Hinton, 2012



Using the CNN for retrieval

The descriptor
Is the vector
of neuron
activations in
the second
last layer

Query Top 6 results

Krizhevsky, Sutskever and Hinton, 2012



Image CNN for 3D shapes

 Let's take a CNN trained on a (huge) image database, and use
It to analyze views of 3D shapes

* Render a 3D shape from an arbitrary viewpoint

e Pass it through the pre-trained CNN and take the neuron
activations in the second-last layer as the descriptor

e For more accuracy, fine-tune the network on a training set of
rendered shapes before testing

* Just this alone, with a single view (from an unknown direction)
of the shape, bumps up the mAP retrieval accuracy (area
under PR curve) on a 40-class, 12K-shape collection from

40.9% (LFD) to 61.7%.
e An LFD-like approach with 12 views/shape further improves to 62.8%



Combining Views

e A smarter way to aggregate information from multiple views

» Take the output signal of the last convolutional layer of the base
network (CNN,) from each view, and combine them, element-by-

element, using a max-pooling operation

 Pass this view-pooled signal through the rest of the network (CNN,)

n I_i!"- —
© & -~ bathtubjn
4 bed &
.‘ . chair———
* ’ desk[—
b o dresser3
/ B toilet—
3D shape model t
rendered with 2D rendered our multi-view CNN architecture output class

different virtual cameras images predictions



Combining Views

* The view-pooled CNN can still be trained (in exactly the same way)
using back-propagation and gradient descent

* For retrieval, the descriptor from the second-last layer can be further
tuned by learning a Mahalanobis metric (a projection of the
descriptors) where the distance between shapes of the same training
category Is small

= = s | —
© < -~ bathtubp
: ) v bed O
.‘ . chair———
/ ! ’ ] desk—
J - e dresser[3
/ F \ o -
/ T‘\" il
Lll ] - toilet—
3D shape model r
rendered with 2D rendered our multi-view CNN architecture o Flass
predictions

different virtual cameras images



How well does this work?
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Su et al., “Multi-view Convolutional Neural Networks for 3D Shape Recognition”, 2015



Su et al., “Multi-view Convolutional Neural Networks for 3D Shape Recognition”, 2015

A side benefit of view-based representations

e The MVCNN can be fine-tuned to retrieve 3D models based on
hand-drawn 2D sketches

top 10 retrieved 3D shapes
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depth buffer
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Canny edge
detection

human sketch
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Global descriptors enable retrieval.
Let's look at an application enabled by
good local descriptors.



Shape Segmentation and Labeling
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Shape Segmentation and Labeling

o Cs 0l i€
C = { head, neck, torso, leg, tail, ear }

Kalogerakis, Hertzmann and Singh, 2010



Conditional Random Field for
Segmentation and Labeling
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Effect of the pairwise term

Unary term classifier Full CRF result

Kalogerakis, Hertzmann and Singh, 2010



View-based local descriptors?

* CNNs can also yield local descriptors

o |f multi-view CNNs dramatically improve retrieval
accuracy, can they also improve segmentation
accuracy?

* The answer appears to be yes (more details
coming soon!)



“High-Level” Geometric Analysis

* What type of object is
this?

 How can we generate
more objects like this?

e What attributes does it
have?

e What functions does it
serve?

Ake Axelsson



QOutline

e Learning shape structure

* Probabilistic models of shape



QOutline

e Learning shape structure

* Probabilistic models of shape

e Learning shape semantics

* Semantic attributes (scary, artistic, ...)
» Mechanical function (this airplane should fly...)

 Human interaction (sit comfortably in a chair...)



What is the role of data?

Google/Trimble 3D Warehouse (~millions of downloadable models)



What is the role of data?

SsharPrefeT Search

Choose a taxonomy:
ShapeNetCore j
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What is the role of data?

* Reuse (of existing components)
* Training (of computational models)

* Inspiration (for new designs)



QOutline

e Learning shape structure

* Probabilistic models of shape



Shape spaces should be...

* General

» Topological/geometric/configurational variety
* Probabilistic

 Some shapes are more plausible than others
* Generative

e Can be used to produce new shapes
* Meaningfully Parametrized

e Design intent readily maps to “suitable” shapes



Shape Space: Maya

Sequences of

< commands to
Maya/AutoCAD/ZBrush...
\. /
Generality: High Meaningful parametrization:  No

Probabilistic:  No Data-driven: No



Shape Space: Deformable Template

(one topology, plus parameters for body type)
-

[ =) g—i[ v( <.\ =
LS

1 k\ A 3

-20 kg -40kg -20kg original +20kg  +40kg +20 kg

.\\

-20 cm +20 cm
Generality: Low Meaningful parametrization:  Moderate
Probabilistic: ~ Yes Data-driven: Yes

Allen, Curless and Popovic, 2003



Shape Space: Deformable Template

(one topology, plus parameters for both body type and pose)

Generality: Low-ish Meaningful parametrization:  Moderate
Probabilistic: ~ Yes Data-driven: Yes

Anguelov et al., 2005



Shape Space: Parametrized Procedure

(fixed set of parameters)

Generality: Moderate Meaningful parametrization:  Yes
Probabilistic:  No Data-driven: No

Weber and Penn, 1995



Shape Space: Probablilistic Procedure

(probability distribution on parameters)

Generality: Moderate Meaningful parametrization:  Yes
Probabilistic: ~ Yes Data-driven: Partially

Talton et al., 2009



Shape Space: Probabilistic Grammar

(hierarchical generation)

PRIORITY 1:
1: footprint ~» S(1r,building _height,1r) facades
T(0,building _height ,0) Roof(hipped”,roof -angle){ roof }
PRIORITY 2:
2: facades ~» Comp(”’sidefaces”){ facade }
3: facade : Shape.visible(”street”)
~+ Subdiv(”X”,1r,door_width*1.5){ tiles | entrance } : 0.5
~» Subdiv(’X”,door _width*1.5,1r){ entrance | tiles } : 0.5
4: facade ~ tiles
tiles ~ Repeat("X”,window_spacing){ tile }
6: tile ~ Subdiv(”X”,1r,window_width,1r){ wall |
Subdiv(”Y” ,2r,window_height,1r){ wall | window | wall } | wall }
7.  window : Scope.occ(’noparent”) != "none” ~» wall
8: window ~» S(1r,1r,window_depth) I(”win.obj”)
9: entrance ~» Subdiv(”X”,1r,door _width,1r){ wall |
Subdiv(”’Y”,door_height 1r){ door | wall } | wall }
10: door ~» S(1r,1r,door_depth) 1(”door.obj”)
11: wall ~ I(’wall.obj”)

e

Generality: Moderate Meaningful parametrization:  Yes
Probabilistic: ~ Yes Data-driven: Reuse

Mdller et al., 2006



Shape Space: Shape Grammar

(learned from a single example)

Generality: Moderate Meaningful parametrization:  Moderate
Probabilistic: ~ No Data-driven: Moderate

Bokeloh et al. 2010



Shape Space: Probabilistic Grammar

(learned from examples)

Generality: Moderate Meaningful parametrization:  Moderate
Probabilistic: ~ Yes Data-driven: Yes

Talton et al., 2012



Shape Space: Assembly-Based Modeling

(piece together existing components)

Generality: Moderate Meaningful parametrization:  Yes
Probabilistic:  No Data-driven: Reuse

Spore, Maxis 2008



Shape Space: Probabilistic Assembly

(some assemblies are better than others)

Generality: Moderate Meaningful parametrization:  Yes
Probabilistic: ~ Yes Data-driven: Yes

Kalogerakis, Chaudhuri, Koller and Koltun, 2012



Shape Space: Probabilistic Assembly

(some assemblies are better than others)

Shape style € Z*

Number of parts Part style € {0}UZ*

from a category

e {0}uzZ~*

Continuous feature vector € R" Discrete feature vector € Z"

P(R) || [P(Si| R)P(N, | R, m(N:))P(C: | Si,m(Ci)) P(Dy | i, 7(Dy))]

JEL.
Generality: Moderate Meaningful parametrization:  Yes
Probabilistic: ~ Yes Data-driven: Yes

Kalogerakis, Chaudhuri, Koller and Koltun, 2012



Shape Space: Probabilistic Assembly

(some assemblies are better than others)

;.?.l\a, NN“

g‘g\’ffgf\?m

Learned shape styles

L9 UOQQ
u MQ'

Learned component styles

Generality: Moderate
Probabilistic: ~ Yes

Meaningful parametrization:  Yes
Data-driven: Yes

Kalogerakis, Chaudhuri, Koller and Koltun, 2012



Shape Space: Probabilistic Assembly

(some assemblies are better than others)

g p . o -
i!‘\ fg “?“3 5 'j,;’ Dﬁ ZX gy

Learned shape styles

18 2.8 9% 77".’@’
e gy

Learned Component styles More learned shape “styles”
Generality: Moderate Meaningful parametrization:  Yes
Probabilistic: ~ Yes Data-driven: Yes

Kalogerakis, Chaudhuri, Koller and Koltun, 2012



Shape Space: Probabilistic Assembly

(some assemblies are better than others)

ey
Generality: Moderate Meaningful parametrization:  Yes
Probabilistic: ~ Yes Data-driven: Yes

Kalogerakis, Chaudhuri, Koller and Koltun, 2012



Shape Space: Probabilistic Assembly

(some assemblies are better than others)
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Shape Space: Probabilistic Assembly

(some assemblies are better than others)
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Shape Space: Probabilistic Assembly

(some assemblies are better than others)
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Shape Space: Probabilistic Assembly

(some assemblies are better than others)
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Shape Space: Probabilistic Assembly

(some assemblies are better than others)
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Shape Space: Probabilistic Assembly

(some assemblies are better than others)
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Generality: Moderate Meaningful parametrization:  Yes
Probabilistic: ~ Yes Data-driven: Yes

Kalogerakis, Chaudhuri, Koller and Koltun, 2012



Shape Space: 3D Deep Belief Network

(convolutional + fully-connected RBM, stacked layers)
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3D voxel input t!‘ .} ‘ .:\" b*’d',’u

Generality: High Meaningful parametrization:  No
Probabilistic: ~ Yes Data-driven: Yes

Wu, Song, Khosla, Yu, Zhang, Tang and Xiao, 2015



Shape Space: 3D Deep Belief Network

(convolutional + fully-connected RBM, stacked layers)

GT 3D ShapeNets Completion Result
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Sampled shapes Completed shapes
Generality: High Meaningful parametrization:  No
Probabilistic: ~ Yes Data-driven: Yes

Wu, Song, Khosla, Yu, Zhang, Tang and Xiao, 2015
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* Make a cute toy

* Make an aerodynamic airplane
* Make a comfortable chair

* Make an efficient bicycle

* Make a professional-looking webpage



QOutline

e Learning shape semantics

* Semantic attributes (scary, artistic, ...)
» Mechanical function (this airplane should fly...)

 Human interaction (sit comfortably in a chair...)



Semantic Basis for Shape Space




) e

Semantic Basis for Shape Space




A cute toy for a small child

Less Graceful

Flexible Graceful Long Pointed Wide

Chaudhuri, Kalogerakis, Giguere and Funkhouser, 2013



Learning Semantic Attributes

* Crowdsource comparative adjectives
e Amazon Mechanical Turk
e Schelling survey
* Crowdsource comparisons for training pairs

e Ais morel.....] than B

e Learn ranking functions

* f. shape features & R
e Rank-SVM with transformed features & sigmoid loss
e |terate with cross-correlation between attributes

e Extend to multi-component rankings



Learning Semantic Attributes

* Rank-SVM: Project features onto linear subspace
that best preserves pairwise orderings

4
© Learn T'm (X) — W+ X

st V(i,§) € Om: Wi - X; > Wy, * X

V(%,7) € Sm: W ' Xi = Wiy, * X;j

minimize ||w,,||5 + p Z Ccij (1 — o(Wm(x; —x;5)))

,"" zajeom
o/. +v ) eo(|wm(x; — %))

Chapelle 2007, Parikh and Grauman 2011, Chaudhuri et al. 2013



“Dangerous”
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Chaudhuri, Kalogerakis, Giguere and Funkhouser, 2013




“Dangerous”
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Chaudhuri, Kalogerakis, Giguere and Funkhouser, 2013



“Dangerous”

—

Chaudhuri, Kalogerakis, Giguere and Funkhouser, 2013
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Chaudhuri, Kalogerakis, Giguere and Funkhouser, 2013



“Old-fashioned”
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Chaudhuri, Kalogerakis, Giguere and Funkhouser, 2013



“Old-fashioned”

.|. l-\.__._‘ e e o ...-;.
w4 i _ i 7
e = i o o - -{,_-" ,_ _“/V
. ; ¥ o -

Chaudhuri, Kalogerakis, Giguere and Funkhouser, 2013



Semantic Shape Editing

(VideO) ‘

More muscular

Less compact

PR

More sporty

Less modern

More luxurious

Yumer, Chaudhuri, Hodgins and Kara, SIGGRAPH 2015



Semantic Shape Editing

(b)
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Yumer, Chaudhuri, Hodgins and Kara, SIGGRAPH 2015




Deformation Space = Feature Space

Use deformation handle parameters as shape features

e Sphere: r,p;|i € {z,y, z}
S e Cylinder: 7, pi, 6;|i € {z,y, z}
1

e Circular Cone: 7, 3, pi, 0;|i € {z,y, 2z}
. | L Quadric: kl: k2:pi1 65|i € {&:‘,y, Z}

Yumer and Kara, SIGGRAPH Asia 2014



Deformation Space = Feature Space

Use deformation handle parameters as shape features

S5 8 5
o

X

Yumer, Chaudhuri, Hodgins and Kara, SIGGRAPH 2015



Deformation Space = Feature Space

L

Yumer, Chaudhuri, Hodgins and Kara, SIGGRAPH 2015



Comparisons in Feature Space

Yumer, Chaudhuri, Hodgins and Kara, SIGGRAPH 2015



Attribute Distribution over Feature Space

PTO
PP

FS&
=

Yumer, Chaudhuri, Hodgins and Kara, SIGGRAPH 2015




Attribute Learning: Absolute Scores

* Assume normally distributed absolute scores

(m_aﬁzl
2(1'7?‘,

1 —
2
a‘PT- NN(Q,IJ"LBQ,G-E): €

L TiV2T

» Pairwise comparisons modeled as difference of

normal distributiorls// from user study statistics
2

2 2
aP?: _ an i N(a”’ijﬁagij) — N(aﬂ‘i — aMjra%; T a,o-j)

* Solve overdetermined linear system

; S o 2 | 2 __ 2
alli alli = aMij a0i T a0 = a0ij




Attribute Learning: Scoring Function

Fagro) = 37 el g (o)

. indicator function of feature vectori R ———
: reliability factor b ore = 1 ol

teT Zj wj (XS)

: feature vector of the new shape
: feature vector of shape ¢ from database
. attribute score of the new shape

. set of all shapes in the database



Constrained Path Traversal

(b)

Less Attribute Values (for which the slider is being designed) More
I S

m: Edited shape’s current location in feature space — : Edited shape’s spline path mapped to the slider
e : Shapes with higher attribute value e« : Shapes that violate the active constraint
: Shapes with lower attribute value e« : Shapes that do not violate the active constraint

Yumer, Chaudhuri, Hodgins and Kara, SIGGRAPH 2015



Deformation from a Given Feature Vector
Flashback: Deformation handle parameters = shape feature vector
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Flow

10N

Ic Deformati

Semant

J 22 72

Vo s

input from
point set

Deformed with F1-32 output

Deformed with F2-32 output

Point Set

Original Shape

Yumer and Mitra, ECCV 2016



Designing for Mechanical Function

not stable

Umetani, Igarashi and Mitra, 2012



Designing for Mechanical Function

Umetani, Koyama, Schmidt and Igarashi, 2014



Designing for Mechanical Function

Umetani, Koyama, Schmidt and Igarashi, 2014



Designing for Mechanical Function

4 - acquired irajectory i 4@ fitled trajectory -8 -8 empinical wing element =#= acquired trajectory 4 our simulation
=t empirical wing element == hallistic trajectory
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Umetani, Koyama, Schmidt and Igarashi, 2014



Designing for Mechanical Function

automatic
adjustment

user’s edit

-

ﬁ :

e e

Umetani, Koyama, Schmidt and Igarashi, 2014



What makes a chair a chair?

Grabner, Gall and Van Gool, 201



Human-Centric Shape Analysis

Kim, Chaudhuri, Guibas and Funkhouser, 2014



Point-to-Point Correspondences

Kim, Chaudhuri, Guibas and Funkhouser, 2014



Functional Parts

Kim, Chaudhuri, Guibas and Funkhouser, 2014



Structural Variations

Kim, Chaudhuri, Guibas and Funkhouser, 2014



Pose Prediction Pipeline

(a) Input Shape (b) Predicted Contact Probabilities (c) End Effector Probabilities (d) Predicted Pose

© Pelvis
® Back
¢ 1 DOF
03 DOF|+
pa]nl o :
back
pelvis
/
E toe } = 5y
(a) Training Examples (b) High-probability contacts Joint Types Dlstrlbutmn of end effectors for some sampled poses

Kim, Chaudhuri, Guibas and Funkhouser, SIGGRAPH 2014



Key to efficient optimization:
Sample pose prior and contact priors independently

C=4

Try dj o]
Y different rigid transformations @

G=1

Contact distribution End-effector distribution

Kim, Chaudhuri, Guibas and Funkhouser, SIGGRAPH 2014



Learning to Predict Human Interaction

Kim, Chaudhuri, Guibas and Funkhouser, SIGGRAPH 2014



Designing for Human Interaction

Zheng, Dorsey and Mitra, 2014



Shape Adjustment for Body Type

Zheng, Dorsey and Mitra, 2014



Shape Adjustment for Body Pose

lying

Zheng, Dorsey and Mitra, 2014



Summary

“High-level” geometric analysis

Probabilistic models can characterize the structure of
“plausible” objects, and generate new ones

Design intent can be captured through
semantic attributes, mechanical function and
human interaction

Models of structure, attributes, function and interaction
can be automatically learned from (big) data





