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MakerBot Industries

Shapes are everywhere!



AFRL Discovery Lab/Aurora Flight Sciences

Shapes are everywhere!



Shapes are everywhere!

Saxena Lab, Cornell/Stanford



Shapes are everywhere!

Google Inc.



Shape Representations

Point cloud Polygon mesh

Volumetric
mesh

Spline patches



“Low-Level” Geometric Analysis

Dimensions

Curvature

Geodesics

Moments



Negative

Zero

Positive

Jhausauer@wikipedia

Gaussian Curvature



www.ian-ko.com

Gaussian Curvature



Can a 2D ant on a 2D surface tell if it lives in a
space of positive, negative or zero curvature?

Can a person, in 3D?

Yes, by measuring distances!



Gemmer and Venkataramani, 2013



Sharon et al. 2004



Sharon et al. 2004



“Low-Level” Geometric Analysis

Discrete Di�erential Geometry Medial Axis Transform

Spectral Decomposition



Matrices as transformations
� Let � be an���� matrix

� It can be thought of as a function that
maps a vector����

� to a vector ������

� � is a linear transformation
� � is linear if����������������������

� An eigenvalue of � is a scalar
� such that

            �������

where � is some �-D vector
� � is the corresponding eigenvector

StackExchange, Wikipedia

Blue arrow is eigenvector of shear
transform, red is not



Functions as vectors

� Functions from� to 	 form a vector space: we can
think of functions as “vectors”
� E.g. we can commutatively add two functions:
�������������

� Or distribute multiplication with a scalar:������������������

� A function� can be discretized to an �-D vector of
sampled values:��������	�������	��	 �������

Continuous function �

Discrete approximation ���

0 1

  1     2     3    4     5    6     7     8    9    10    11    12    13    14



Linear operators

� An operator� is a mapping from a vector space� to
another vector space�
� � is a linear operator if ����������������������

� The set of functions� from domain � to codomain 	 is a
vector space
� So we can have operators � that map from one function space
� to another function space �

� Note that � maps functions to functions!

� The di�erentials      ,      ,       etc are linear operators
� They map functions to their derivatives

�

� �

�
�

� �
�

�
�

� �
�



Eigenfunctions of operators

� Aneigenvalue of a linear operator� that maps a
vector space to itself is a scalar� s.t.

���������

and � is the correspondingeigenvector
� If � maps functions to functions, then we call� an
eigenfunction: ����������



Discrete Linear Operators

� Theorem: Any linear operator between £nite-
dimensional vector spaces can be represented by a
matrix
� Let’s say we have a set of functions� from � to 	
� The discrete versions of the functions form a £nite-
dimensional vector space�� equivalent to��

� Each function is sampled at the same £nite set of points
� Let � be a linear operator from� to itself
� … and �� be a “discrete version” of� acting on ��
� Then �� can be represented by a����matrix (cf. theorem)



Example: Discrete Derivative

� �
�

� �
�� � � � � �

� �� � � � �

� �� � � �

� � �
� � �� �

� � � � ��
�

Continuous
� Function: �
� Operator:

� Applying operator:

Discrete
� Vector: �����������	���������������
� Matrix:

� Applying matrix:
��������

�

� �

� �

� �
� � �



Example: Discrete Derivative

Continuous Discrete

�

� �
�



Example: Discrete 2nd Derivative

Continuous
� Function:�
� Operator:

� Applying operator:

Discrete
� Vector: �����������	���������������
� Matrix:

� Applying matrix:
��������

�
�

� �
�

�
�

�

� �
�

� � � �

� �
�

�
� �

�� � � � � �

� �� � � � �

� �� � � �

� � �
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� � � � ��
�



Operators in higher dimensions
� The underlying function space can have a higher-
dimensional domain

2D discrete Laplace operator

Continuous function

Discrete approximation



Interpreting eigenfunctions

� Eigenvalues of a linear operator form itsspectrum
� The eigenfunctions are unchanged (except for
scaling) when transformed by the operator
� Thinkofthemasstandingwavesonthedomain

� E.g.

�
�

��� �� � �

� �
�

	 ��� � ����� � �

�
�

	�� �� ��

� �
�

	 ��� � 	�� �� ��

�
�

�
� �

� �
�

� �� � �
� �



Interpreting eigenfunctions
� Theeigenfunctionsoftheoperatorformabasis
for the function space
� E.g.thesinusoidaleigenfunctionsof formthe
Fourier basis

The £rst 8 sinusoidal eigenfunctions of the second derivative operator.
The eigenvalues are the negative squared frequencies.

�
�

� �
�

Levy and Zhang



Operators on manifolds

� We can de£ne a function on
a manifold curve/surface!
� E.g. the coordinate function:
gives the (X, Y, Z) position of
a point on the surface

� A common operator is the
Laplace-Beltrami operator
� Its eigenfunctions de£ne a
basis for functions over the
surface

Ovsjanikov et al.



Eigenfunctions of Laplace-Beltrami

� Intrinsic basis for
functions over
surface
� Doesn’t change
under isometry

� We can discretize it
as usual: the
function is de£ned
at a £xed set of
sample points on
the shape

Levy and Zhang



Eigenfunctions of Laplace-Beltrami
� The spectrum of the L-B operator characterizes
the intrinsic geometry of the shape

� Two shapes related by isometry have the same
Laplace-Beltrami spectrum

Levy and Zhang, Ovsjanikov et al.



Expressing a function with eigenfunctions

� Continuous:
��������� ������������������������������

� Discrete:

Levy and Zhang



Reconstruction in 2D

� More accuracy with more eigenfunctions
� Function is the coordinate function

� We’re reconstructing the extrinsic shape of the object

Levy and Zhang



Reconstruction in 3D
� More accuracy with more eigenfunctions
� Function is the coordinate function

� We’re reconstructing the extrinsic shape of the object

Levy and Zhang



“Mid-Level” Geometric Analysis

Parametrization Deformation

Segmentation CorrespondencesRetrieval



Shape Descriptors

� A shape descriptor is a set of numbers
that describes a shape in a way that is
� Concise
� Quick to compute
� E�cient to compare
� Discriminative

� Global descriptors describe whole objects
� Local descriptors describe
(neighborhoods around) points

� Typically, the descriptors form avector
space with ameaningful distance metric

Global

Local

Funkhouser;   Feng, Liu, Gong



Feature detection Correspondences

Registration Symmetry detection

Segmentation

Labeling

Local

Retrieval

Recognition

Classi�cation

Clustering

Global



LFD: a classic global descriptor

� The Light Field Descriptor (LFD) of a 3D shape is a set
of 2D images of it, taken with a camera array
� E.g. 20 cameras positioned at the vertices of a regular
dodecahedron

� Images rendered as silhouettes,
so 10 unique views (say from a
hemisphere)

� Instead of the actual images,
store their Zernike Moments
and Fourier Descriptors

� Compare shapes over all possible
relative rotations of image clouds

Chen et al., “On Visual Similarity Based 3D Model Retrieval”, 2003



Retrieval Results

3D Harmonics:
spectral signature of
the shape

Shape 3D Descriptor:
curvature histograms

Multiple View
Descriptor: align
shapes using PCA,
compare views along
principal axes

Test database: 1833 shapes, with 549 shapes classi£ed into 47 functional
categories, the remaining shapes classi£ed as “miscellaneous”

Chen et al., “On Visual Similarity Based 3D Model Retrieval”, 2003



What if we use better image descriptors?

� ZMD/FDareok,buthardlythestateoftheartin
modern computer vision (circa 2016)

� Convolutional Neural Nets (CNNs) have
revolutionized image recognition tasks

In 2012, the error rate in the ImageNet visual recognition
challenge was halved by a deep CNN (gains are typically
incremental). There are 1000 categories: the baseline of

random guessing would have a 99.9% error.



What is a Convolutional Neural Network?

� Imagine we have a set of� samples from some
signal

� We want to produce a prediction, e.g. whether the
signal represents a human voice, or a picture of a
cat, or a depth image of a building

Christopher Olah



What is a Convolutional Neural Network?

� We can compute the probability as a function� of
these values
� In a fully-connected network, the function takes in all the
inputs at once, e.g. as������, where � is a weight vector
and � is some nonlinear transformation such as a sigmoid
function

Christopher Olah



What is a Convolutional Neural Network?
� Fully-connected networks have some drawbacks

� The function isvery high-dimensional (all inputs processed at once)
� No complex relationships between inputs are modeled (just a dot
product)

� Local information isnot captured in a “translation-invariant” way
(a feature of the signal at the left end of the sequence must be
learned independently of the same feature occurring at the right end)

Christopher Olah



What is a Convolutional Neural Network?

� Solution: a convolutional layer
� A £lter (again, a dot product followed by a nonlinear
transformation) is applied on local neighborhoods of
the signal

Christopher Olah



What is a Convolutional Neural Network?

� All £lters share the same weights!
� Dramatically reduces number of parameters of the network

� The £nal output is a function of the £lter responses

Christopher Olah

Each A node
has the same
set of
weights



What is a Convolutional Neural Network?

� We can make the neighborhoods larger, to capture
broader local features

Christopher Olah



What is a Convolutional Neural Network?
� Convolutional layers arecomposable: they can be stacked with
each layer providing inputs for the next layer
� Higher layers can capture more abstract features since they e�ectively
cover larger neighborhoods, and combine multiple di�erent nonlinear
transformations of the signal

Christopher Olah

One set of
weights
for all A
nodes

Another set
of weights
for all B
nodes



What is a Convolutional Neural Network?

Return the max of
the inputs

Christopher Olah

� To make the network robust to small translations in
detected features, and to reduce the amount of
redundant data fed into higher layers, we introduce
pooling layers



What is a Convolutional Neural Network?

Christopher Olah

� Thesignalcanbe2Dor3D:the�ltersarenowalso
2D/3D, but it’s all essentially the same



What is a Convolutional Neural Network?

Christopher Olah

� The function computed by this gigantic model is
di�erentiable* w.r.t. the weights
� Giventrainingdataandalossfunction measuring the
deviation between predicted and actual values, we can
optimize the weights by gradient descent

� The gradient of the loss function can
be found e®ciently by a method
called back-propagation

* nearly everywhere



A real-world CNN

Krizhevsky, Sutskever and Hinton, 2012

� 5 convolutional layers, 3 max-pooling layers, 3
fully-connected layers

� ~60 million parameters (despite the weight
sharing!)



Using the CNN for classi�cation

Krizhevsky, Sutskever and Hinton, 2012



Using the CNN for retrieval

Krizhevsky, Sutskever and Hinton, 2012

Query Top 6 results

The descriptor
is the vector
of neuron
activations in
the second
last layer



Image CNN for 3D shapes
� Let’s take a CNN trained on a (huge) image database, and use
it to analyze views of 3D shapes
� Render a 3D shape from an arbitrary viewpoint
� Pass it through thepre-trained CNN and take the neuron
activations in the second-last layer as the descriptor

� For more accuracy,�ne-tunethe network on a training set of
rendered shapes before testing

� Just this alone, with a single view (from an unknown direction)
of the shape, bumps up the mAP retrieval accuracy (area
under PR curve) on a 40-class, 12K-shape collection from
40.9% (LFD) to61.7%.
� An LFD-like approach with 12 views/shape further improves to62.8%

Su et al., “Multi-view Convolutional Neural Networks for 3D Shape Recognition”, 2015



Combining Views
� A smarter way to aggregate information from multiple views

� Take the output signal of the last convolutional layer of the base
network (CNN1) from each view, and combine them, element-by-
element, using a max-pooling operation

� Pass this view-pooled signal through the rest of the network (CNN2)

Su et al., “Multi-view Convolutional Neural Networks for 3D Shape Recognition”, 2015



Combining Views
� The view-pooled CNN can still be trained (in exactly the same way)
using back-propagation and gradient descent

� For retrieval, the descriptor from the second-last layer can be further
tuned by learning a Mahalanobis metric (a projection of the
descriptors) where the distance between shapes of the same training
category is small

Su et al., “Multi-view Convolutional Neural Networks for 3D Shape Recognition”, 2015



How well does this work?

Su et al., “Multi-view Convolutional Neural Networks for 3D Shape Recognition”, 2015



A side bene£t of view-based representations

� TheMVCNNcanbe�ne-tunedtoretrieve3Dmodelsbasedon
hand-drawn 2D sketches

Su et al., “Multi-view Convolutional Neural Networks for 3D Shape Recognition”, 2015



Global descriptors enable retrieval.
Let’s look at an application enabled by

good local descriptors.



Shape Segmentation and Labeling

Kalogerakis, Hertzmann and Singh, 2010



Shape Segmentation and Labeling

Kalogerakis, Hertzmann and Singh, 2010



Conditional Random Field for
Segmentation and Labeling

Kalogerakis, Hertzmann and Singh, 2010

Unary term Pairwise term



E�ect of the pairwise term

Kalogerakis, Hertzmann and Singh, 2010



View-based local descriptors?

� CNNs can also yield local descriptors
� If multi-view CNNs dramatically improve retrieval
accuracy, can they also improve segmentation
accuracy?

� The answer appears to be yes (more details
coming soon!)



“High-Level” Geometric Analysis

Ake Axelsson

� What type of object is
this?

� How can wegenerate
more objects like this?

� What attributes does it
have?

� What functions does it
serve?



Outline

� Learning shape structure
� Probabilistic models of shape



Outline

� Learning shape structure
� Probabilistic models of shape

� Learning shape semantics
� Semantic attributes (scary, artistic, …)
� Mechanical function (this airplane should �y...)
� Human interaction (sit comfortably in a chair...)



What is the role of data?

Google/Trimble 3D Warehouse (~millions of downloadable models)



What is the role of data?

http://shapenet.cs.stanford.edu



What is the role of data?

� Reuse (of existing components)

� Training (of computational models)

� Inspiration (for new designs)



Outline

� Learning shape structure
� Probabilistic models of shape

� Learning shape semantics
� Semantic attributes (scary, artistic, …)
� Mechanical function (this airplane should �y...)
� Human interaction (sit comfortably in a chair...)



Shape spaces should be...

� General
� Topological/geometric/con£gurational variety

� Probabilistic
� Some shapes are more plausible than others

� Generative
� Can be used to produce new shapes

� Meaningfully Parametrized
� Design intent readily maps to “suitable” shapes



Shape Space: Maya

Generality: High Meaningful parametrization: No
Probabilistic: No Data-driven: No

Sequences of
commands to

Maya/AutoCAD/ZBrush...



Shape Space: Deformable Template
(one topology, plus parameters for body type)

Allen, Curless and Popovic, 2003

Generality: Low Meaningful parametrization: Moderate
Probabilistic: Yes Data-driven: Yes



Shape Space: Deformable Template
(one topology, plus parameters for both body type and pose)

Anguelov et al., 2005

Generality: Low-ish Meaningful parametrization: Moderate
Probabilistic: Yes Data-driven: Yes



Weber and Penn, 1995

Shape Space: Parametrized Procedure
(£xed set of parameters)

Generality: Moderate Meaningful parametrization: Yes
Probabilistic: No Data-driven: No



Shape Space: Probabilistic Procedure
(probability distribution on parameters)

Talton et al., 2009

Generality: Moderate Meaningful parametrization: Yes
Probabilistic: Yes Data-driven: Partially



Shape Space: Probabilistic Grammar
(hierarchical generation)

Müller et al., 2006

Generality: Moderate Meaningful parametrization: Yes
Probabilistic: Yes Data-driven: Reuse



Shape Space: Shape Grammar
(learned from a single example)

Bokeloh et al. 2010

Generality: Moderate Meaningful parametrization: Moderate
Probabilistic: No Data-driven: Moderate



Shape Space: Probabilistic Grammar
(learned from examples)

Talton et al., 2012

Generality: Moderate Meaningful parametrization: Moderate
Probabilistic: Yes Data-driven: Yes



Shape Space: Assembly-Based Modeling
(piece together existing components)

Spore, Maxis 2008

Generality: Moderate Meaningful parametrization: Yes
Probabilistic: No Data-driven: Reuse



Shape Space: Probabilistic Assembly
(some assemblies are better than others)

Kalogerakis, Chaudhuri, Koller and Koltun, 2012

Generality: Moderate Meaningful parametrization: Yes
Probabilistic: Yes Data-driven: Yes



Shape Space: Probabilistic Assembly
(some assemblies are better than others)

Kalogerakis, Chaudhuri, Koller and Koltun, 2012

Generality: Moderate Meaningful parametrization: Yes
Probabilistic: Yes Data-driven: Yes

Shape style ����

Number of parts
from a category
��	�����

Part style  ��	�����

Continuous feature vector ���� Discrete feature vector ����



Shape Space: Probabilistic Assembly
(some assemblies are better than others)

Kalogerakis, Chaudhuri, Koller and Koltun, 2012

Generality: Moderate Meaningful parametrization: Yes
Probabilistic: Yes Data-driven: Yes

Learned shape styles

Learned component styles



Shape Space: Probabilistic Assembly
(some assemblies are better than others)

Kalogerakis, Chaudhuri, Koller and Koltun, 2012

Generality: Moderate Meaningful parametrization: Yes
Probabilistic: Yes Data-driven: Yes

Learned shape styles

Learned component styles More learned shape “styles”



Shape Space: Probabilistic Assembly
(some assemblies are better than others)

Kalogerakis, Chaudhuri, Koller and Koltun, 2012

Generality: Moderate Meaningful parametrization: Yes
Probabilistic: Yes Data-driven: Yes
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Shape Space: Probabilistic Assembly
(some assemblies are better than others)
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Shape Space: Probabilistic Assembly
(some assemblies are better than others)
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Shape Space: Probabilistic Assembly
(some assemblies are better than others)

Kalogerakis, Chaudhuri, Koller and Koltun, 2012
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Probabilistic: Yes Data-driven: Yes



Shape Space: Probabilistic Assembly
(some assemblies are better than others)

Kalogerakis, Chaudhuri, Koller and Koltun, 2012

Generality: Moderate Meaningful parametrization: Yes
Probabilistic: Yes Data-driven: Yes



Shape Space: Probabilistic Assembly
(some assemblies are better than others)

Kalogerakis, Chaudhuri, Koller and Koltun, 2012

Generality: Moderate Meaningful parametrization: Yes
Probabilistic: Yes Data-driven: Yes



Shape Space: 3D Deep Belief Network
(convolutional + fully-connected RBM, stacked layers)

Wu, Song, Khosla, Yu, Zhang, Tang and Xiao, 2015

Generality: High Meaningful parametrization: No
Probabilistic: Yes Data-driven: Yes



Shape Space: 3D Deep Belief Network
(convolutional + fully-connected RBM, stacked layers)

Wu, Song, Khosla, Yu, Zhang, Tang and Xiao, 2015

Generality: High Meaningful parametrization: No
Probabilistic: Yes Data-driven: Yes

Sampled shapes Completed shapes
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�Make a cute toy

�Make an aerodynamic airplane

�Make a comfortable chair

�Make an e�cient bicycle

�Make a professional-looking webpage



Outline

� Learning shape structure
� Probabilistic models of shape

� Learning shape semantics
� Semantic attributes (scary, artistic, …)
� Mechanical function (this airplane should �y...)
� Human interaction (sit comfortably in a chair...)



Semantic Basis for Shape Space

�
�

�
�

�



Semantic Basis for Shape Space

StrongScary Strong

�

�
�

�
�



A cute toy for a small child

Chaudhuri, Kalogerakis, Giguere and Funkhouser, 2013

(Video)



Learning Semantic Attributes
� Crowdsource comparative adjectives

� Amazon Mechanical Turk
� Schelling survey

� Crowdsource comparisons for training pairs
� A is more […...] than B

� Learn ranking functions
� f: shape features � �

� Rank-SVM with transformed features & sigmoid loss
� Iterate with cross-correlation between attributes
� Extend to multi-component rankings



� Rank-SVM: Project features onto linear subspace
that best preserves pairwise orderings

Learn

s.t.

Chapelle 2007, Parikh and Grauman 2011, Chaudhuri et al. 2013

Learning Semantic Attributes



“Dangerous”

Chaudhuri, Kalogerakis, Giguere and Funkhouser, 2013



“Dangerous”

Chaudhuri, Kalogerakis, Giguere and Funkhouser, 2013



“Dangerous”

Chaudhuri, Kalogerakis, Giguere and Funkhouser, 2013



“Old-fashioned”

Chaudhuri, Kalogerakis, Giguere and Funkhouser, 2013



“Old-fashioned”

Chaudhuri, Kalogerakis, Giguere and Funkhouser, 2013



“Old-fashioned”

Chaudhuri, Kalogerakis, Giguere and Funkhouser, 2013



Semantic Shape Editing

More luxurious

Less modernMore sporty

Less compact More muscular

Yumer, Chaudhuri, Hodgins and Kara, SIGGRAPH 2015

(Video)



Yumer, Chaudhuri, Hodgins and Kara, SIGGRAPH 2015

Semantic Shape Editing



Deformation Space = Feature Space

Yumer and Kara, SIGGRAPH Asia 2014

Use deformation handle parameters as shape features



Deformation Space = Feature Space

Use deformation handle parameters as shape features

Yumer, Chaudhuri, Hodgins and Kara, SIGGRAPH 2015



Deformation Space = Feature Space

Yumer, Chaudhuri, Hodgins and Kara, SIGGRAPH 2015



Comparisons in Feature Space

Yumer, Chaudhuri, Hodgins and Kara, SIGGRAPH 2015



Attribute Distribution over Feature Space

Yumer, Chaudhuri, Hodgins and Kara, SIGGRAPH 2015



Attribute Learning: Absolute Scores
� Assumenormallydistributedabsolutescores

� Pairwise comparisons modeled as di�erence of
normal distributions

� Solve overdetermined linear system

from user study statistics



Attribute Learning: Scoring Function



Constrained Path Traversal

Yumer, Chaudhuri, Hodgins and Kara, SIGGRAPH 2015



Deformation from a Given Feature Vector
Flashback:Deformationhandleparameters=shapefeaturevector



Yumer and Mitra, ECCV 2016

Semantic Deformation Flow



Designing for Mechanical Function

Umetani, Igarashi and Mitra, 2012



Designing for Mechanical Function

Umetani, Koyama, Schmidt and Igarashi, 2014



Designing for Mechanical Function

Umetani, Koyama, Schmidt and Igarashi, 2014



Designing for Mechanical Function

Umetani, Koyama, Schmidt and Igarashi, 2014



Designing for Mechanical Function

Umetani, Koyama, Schmidt and Igarashi, 2014



What makes a chair a chair?

Grabner, Gall and Van Gool, 2011



Human-Centric Shape Analysis

Kim, Chaudhuri, Guibas and Funkhouser, 2014



Point-to-Point Correspondences

Kim, Chaudhuri, Guibas and Funkhouser, 2014



Functional Parts

Kim, Chaudhuri, Guibas and Funkhouser, 2014



Structural Variations

Kim, Chaudhuri, Guibas and Funkhouser, 2014



Pose Prediction Pipeline

Kim, Chaudhuri, Guibas and Funkhouser, SIGGRAPH 2014



Key to e®cient optimization:
Sample pose prior and contact priors independently

Contact distribution End-e�ector distribution

Trydi�erentrigidtransformations

Kim, Chaudhuri, Guibas and Funkhouser, SIGGRAPH 2014



Learning to Predict Human Interaction

Kim, Chaudhuri, Guibas and Funkhouser, SIGGRAPH 2014



Designing for Human Interaction

Zheng, Dorsey and Mitra, 2014



Shape Adjustment for Body Type

Zheng, Dorsey and Mitra, 2014



Shape Adjustment for Body Pose

Zheng, Dorsey and Mitra, 2014



Summary

� “High-level” geometric analysis

� Probabilistic models can characterize the structure of
“plausible” objects, and generate new ones

� Design intent can be captured through
semantic attributes, mechanical function and
human interaction

� Models of structure, attributes, function and interaction
can be automatically learned from (big) data




